def forward(self, x, target): assert x.size(1) == self.size true_dist = x.data.clone() true_dist.fill_(self.smoothing / (self.size - 2))#然后其他地方给0平分 index = torch.tensor([0, 1, 2], dtype=torch.int32) index = index.to (torch.int64) true_dist.scatter_(1, target.data.unsqueeze(1), self.confidence) true_dist[:, self.padding_idx] = 0 mask = torch.nonzero(target.data == self.padding_idx) if mask.dim() > 0:#mask的地方都得是0 true_dist.index_fill_(0, mask.squeeze(), 0.0) self.true_dist = true_dist #计算KL散度 return self.criterion(x, Variable(true_dist, requires_grad=False))这里数据类型该怎么转换
时间: 2024-01-31 09:03:07 浏览: 146
在这段代码中,目前没有需要进行数据类型转换的地方。索引数据类型已经被正确地转换为int64。
`true_dist`是一个tensor,它已经正确地使用scatter_()函数进行了操作。在scatter_()函数中,target.data.unsqueeze(1)作为索引,self.confidence作为值进行了填充。这里不需要进行数据类型转换。
关于`mask`的处理,`torch.nonzero()`返回的是非零元素的索引,因此它的数据类型是int64。所以在这里也不需要进行数据类型转换。
因此,你不需要对数据类型进行额外的转换,代码中已经正确处理了数据类型。
相关问题
def forward(self, x, target): assert x.size(1) == self.size true_dist = x.data.clone() true_dist.fill_(self.smoothing / (self.size - 2))#然后其他地方给0平分 true_dist.scatter_(1, target.data.unsqueeze(1), self.confidence) true_dist[:, self.padding_idx] = 0 mask = torch.nonzero(target.data == self.padding_idx) if mask.dim() > 0:#mask的地方都得是0 true_dist.index_fill_(0, mask.squeeze(), 0.0) self.true_dist = true_dist #计算KL散度 return self.criterion(x, Variable(true_dist, requires_grad=False))这段代码怎么进行数字转换
在这段代码中,没有明确的数字转换操作。代码主要涉及到张量的操作和索引填充,并没有对数字进行单独的转换。
如果你需要对数字进行转换,可以使用Python内置的类型转换函数进行操作。例如,你可以使用int()函数将一个浮点数转换为整数,或者使用float()函数将一个整数转换为浮点数。示例代码如下:
```python
x = 3.14
x = int(x) # 将浮点数转换为整数
y = 5
y = float(y) # 将整数转换为浮点数
```
根据你的实际需求,你可以在代码中找到需要进行数字转换的地方,并使用适当的类型转换函数进行操作。
class BCNN(nn.Module): def __init__(self): nn.Module.__init__(self) self.features = torchvision.models.vgg16(pretrained = True).features self.features = nn.Sequential(*list(self.features.children())[:-1]) self.fc = nn.Linear(512 ** 2, 200) for param in self.feature.parameters(): param.requires_grad = True nn.init.kaiming_normal_(self.fc.weight.data) if self.fc.bias is not None: nn.init.constant_(self.fc.bias.data, val = 0) def forward(self, x): N = x.size()[0] assert x.size() == (N, 3, 448, 448) x = self.features(x) assert x.size() == (N, 512, 28, 28) x = x.view(N, 512, 28 ** 2) x = torch.bmm(x, torch.transpose(x, 1, 2)) / (28 ** 2) assert x.size() ==(N, 512, 512) x = x.view(N, 512 ** 2) x = torch.sqrt(x + 1e-5) x = nn.functional.normalize(x) x = self.fc(x) assert x.size() == (N, 200) return x啥意思
这是一个 PyTorch 模型定义,定义了一个叫做 BCNN 的类,继承自 nn.Module。该模型使用了预训练的 VGG16 网络,去除了最后一层全连接层,将其余层保存在 self.features 中。接着定义了一个全连接层 self.fc,输入为 512x512,输出为 200。在前向传递中,输入数据 x 经过 self.features 后,先将其 reshape 成 N x 512 x (28^2),然后进行矩阵乘法,得到 N x 512 x 512 的输出,接着对输出进行开根号和 L2 归一化处理,最后送入全连接层得到输出。整个模型的作用是将输入图像映射到一个 200 维的向量表示。
阅读全文