c英语判断文件是否为空

时间: 2023-08-09 07:06:13 浏览: 62
在C语言中,我们可以使用文件指针和文件操作函数来判断一个文件是否为空。具体实现如下: ```c #include <stdio.h> int main() { FILE *fp; fp = fopen("filename.txt", "r"); if (fp == NULL) { printf("File does not exist.\n"); return 0; } fseek(fp, 0, SEEK_END); if (ftell(fp) == 0) { printf("File is empty.\n"); } else { printf("File is not empty.\n"); } fclose(fp); return 0; } ``` 首先,我们打开指定的文件,使用fopen()函数,如果文件不存在,fp将会是NULL。然后,我们使用fseek()函数将文件指针移动到文件末尾,使用ftell()函数获取文件长度,如果文件长度为0,则说明文件为空。最后,我们关闭文件指针,使用fclose()函数。
相关问题

用stack判断一个含有大括号中括号小括号和英文字母的文件的括号是不是匹配给我代码

以下是使用Stack判断括号是否匹配的示例代码: ```java import java.util.Stack; public class BracketMatcher { public static boolean isMatched(String input) { Stack<Character> stack = new Stack<>(); for (char c : input.toCharArray()) { if (c == '{' || c == '[' || c == '(') { stack.push(c); } else if (c == '}' || c == ']' || c == ')') { if (stack.isEmpty()) { return false; } char top = stack.pop(); if ((top == '{' && c != '}') || (top == '[' && c != ']') || (top == '(' && c != ')')) { return false; } } } return stack.isEmpty(); } public static void main(String[] args) { String input = "{[(Hello) World]}"; if (isMatched(input)) { System.out.printf("%s is matched\n", input); } else { System.out.printf("%s is not matched\n", input); } } } ``` 在上面的代码中,我们使用了一个Stack来维护括号的匹配情况。我们遍历输入字符串中的每个字符,如果遇到左括号则将其压入栈中,如果遇到右括号则弹出栈顶元素,判断其与右括号是否匹配。如果栈为空或者弹出的栈顶元素与右括号不匹配,则返回false。最后,如果栈为空,则说明所有括号都匹配。

设计一个哈夫曼编码译码系统,对某个英文文本文件(.txt)中的字符进行哈夫曼编码,并给我c语言的代码

好的,我能帮您解答这个问题。首先,哈夫曼编码是一种常用的编码技术,适用于对英文文本文件中的字符进行编码压缩。下面是实现该任务的 C 语言代码: ``` #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAX_TREE_HT 100 // 结构体:哈夫曼树的节点 struct MinHeapNode { char data; // 节点对应的字符 unsigned freq; // 字符出现的频率 struct MinHeapNode *left, *right; // 左右子节点 }; // 结构体:哈夫曼树 struct MinHeap { unsigned size; // 堆的大小 unsigned capacity; // 堆的容量 struct MinHeapNode **array; // 节点数组 }; // 函数:创建哈夫曼树的节点 struct MinHeapNode* newNode(char data, unsigned freq) { struct MinHeapNode* node = (struct MinHeapNode*)malloc(sizeof(struct MinHeapNode)); node->left = node->right = NULL; node->data = data; node->freq = freq; return node; } // 函数:创建空的哈夫曼树 struct MinHeap* createMinHeap(unsigned capacity) { struct MinHeap* minHeap = (struct MinHeap*)malloc(sizeof(struct MinHeap)); minHeap->size = 0; minHeap->capacity = capacity; minHeap->array = (struct MinHeapNode**)malloc(minHeap->capacity * sizeof(struct MinHeapNode*)); return minHeap; } // 函数:交换两个节点的位置 void swapMinHeapNode(struct MinHeapNode** a, struct MinHeapNode** b) { struct MinHeapNode* t = *a; *a = *b; *b = t; } // 函数:最小堆的调整 void minHeapify(struct MinHeap* minHeap, int idx) { int smallest = idx; int left = 2 * idx + 1; int right = 2 * idx + 2; if (left < minHeap->size && minHeap->array[left]->freq < minHeap->array[smallest]->freq) smallest = left; if (right < minHeap->size && minHeap->array[right]->freq < minHeap->array[smallest]->freq) smallest = right; if (smallest != idx) { swapMinHeapNode(&minHeap->array[smallest], &minHeap->array[idx]); minHeapify(minHeap, smallest); } } // 函数:判断是否为叶子节点 int isLeaf(struct MinHeapNode* root) { return !(root->left) && !(root->right); } // 函数:从最小堆中取出频率最小的节点 struct MinHeapNode* extractMin(struct MinHeap* minHeap) { struct MinHeapNode* temp = minHeap->array[0]; minHeap->array[0] = minHeap->array[minHeap->size - 1]; --minHeap->size; minHeapify(minHeap, 0); return temp; } // 函数:插入节点到最小堆中 void insertMinHeap(struct MinHeap* minHeap, struct MinHeapNode* minHeapNode) { ++minHeap->size; int i = minHeap->size - 1; while (i && minHeapNode->freq < minHeap->array[(i - 1) / 2]->freq) { minHeap->array[i] = minHeap->array[(i - 1) / 2]; i = (i - 1) / 2; } minHeap->array[i] = minHeapNode; } // 函数:建立哈夫曼树 void buildMinHeap(struct MinHeap* minHeap) { int n = minHeap->size - 1; int i; for (i = (n - 1) / 2; i >= 0; --i) { minHeapify(minHeap, i); } } // 函数:打印编码表 void printCodes(struct MinHeapNode* root, int arr[], int top) { if (root->left) { arr[top] = 0; printCodes(root->left, arr, top + 1); } if (root->right) { arr[top] = 1; printCodes(root->right, arr, top + 1); } if (isLeaf(root)) { printf("%c: ", root->data); int i; for (i = 0; i < top; ++i) { printf("%d", arr[i]); } printf("\n"); } } // 函数:建立哈夫曼树并打印编码表,返回根结点指针 struct MinHeapNode* huffmanCodes(char data[], int freq[], int size) { struct MinHeapNode *left, *right, *top; struct MinHeap* minHeap = createMinHeap(size); for (int i = 0; i < size; ++i) { minHeap->array[i] = newNode(data[i], freq[i]); } minHeap->size = size; buildMinHeap(minHeap); while (minHeap->size != 1) { left = extractMin(minHeap); right = extractMin(minHeap); top = newNode('#', left->freq + right->freq); top->left = left; top->right = right; insertMinHeap(minHeap, top); } int arr[MAX_TREE_HT], top = 0; struct MinHeapNode* root = extractMin(minHeap); printCodes(root, arr, top); return root; } // 函数:将编码表写入文件 void writeToFile(struct MinHeapNode* root, char data[], int freq[], int size) { FILE *fp = fopen("result.txt", "w"); if (fp == NULL) { printf("Error in opening file!"); return; } int arr[MAX_TREE_HT], top = 0; for (int i = 0; i < size; ++i) { fprintf(fp, "%c:", data[i]); printCodes(root, arr, top); } fclose(fp); } // 函数:读取文件并计算字符频率 void readFromFileAndBuildTree() { char filename[100], ch; int frequency[256] = { 0 }, i = 0; FILE *fp; printf("Enter the filename: "); gets(filename); fp = fopen(filename, "r"); if (fp == NULL) { printf("Error in opening file!"); return; } // 计算每个字符出现的频率 while ((ch = fgetc(fp)) != EOF) { frequency[ch]++; } fclose(fp); int size = 0; for (int i = 0; i < 256; ++i) { if (frequency[i] != 0) { size++; } } // 将字符和频率存入对应的数组中 char data[size]; int freq[size]; int j = 0; for (i = 0; i < 256; ++i) { if (frequency[i] != 0) { data[j] = (char)i; freq[j] = frequency[i]; j++; } } // 建立哈夫曼树 struct MinHeapNode* root = huffmanCodes(data, freq, size); // 将编码表写入文件 writeToFile(root, data, freq, size); } // 主函数:读取文件并压缩 int main() { readFromFileAndBuildTree(); return 0; } ``` 您可以将上述代码保存为 .c 文件,并在已安装 C 编译器的环境下编译运行。注意,本程序默认读取当前目录下的 .txt 文件,编码结果将保存在 result.txt 文件中。

相关推荐

以下使用的代码中的方法,包含了哪些研究方法:###--------------------读取原始数据-------------------- import pandas as pd data = pd.read_excel(r'C:\Users\apple\Desktop\“你会原谅伤害过你的父母吗”话题爬虫文件.xlsx') data = data.iloc[:,4] data = data.rename("评论") ###--------------------数据清洗-------------------- ##去除微博话题引用 import re new_data = [] # 用于存放处理后的数据 for d in data: new_d = re.sub(r'#.+?#', '', d) # 使用正则表达式去除两个“#”之间的内容 new_data.append(new_d) data['评论'] = new_data ##去除停用词 import nltk from nltk.corpus import stopwords nltk.download('stopwords') # 下载停用词列表,如果已经下载可忽略此步骤 stop_words = set(stopwords.words('chinese')) # 加载英文停用词列表 data1 = [] # 用于存放处理后的数据 for d in new_data: words = d.lower().split() # 将文本转换为小写并分词 new_words = [word for word in words if word not in stop_words] # 过滤停用词 new_d = ' '.join(new_words) # 将处理后的词语连接成字符串 data1.append(new_d) new_data = data1 ##去除特殊字符 # 定义正则表达式 pattern = re.compile('[^\u4e00-\u9fa5^a-z^A-Z^0-9^ \^,^.^!^?^;^\u3002^\uFF1F^\uFF01^\u3001]') # 遍历list中的每个元素,使用re.sub函数将字符串中匹配正则表达式的部分替换为空字符串 for i in range(len(new_data)): new_data[i] = re.sub(pattern, '', new_data[i]) ##英文翻译成中文 from translate import Translator translator= Translator(to_lang="zh") for i in range(len(new_data)): # 判断文本中是否含有英文单词,如果有则翻译成中文 if re.search('[a-zA-Z]', new_data[i]): new_data[i] = translator.translate(new_data[i]) ##jieba分词 import jieba import jieba.analyse data_list = [jieba.lcut(text) for text in new_data]

最新推荐

recommend-type

基于Java的五子棋游戏的设计(源代码+论文).zip

基于Java的五子棋游戏的设计(源代码+论文)
recommend-type

智能制造整体解决方案.pptx

智能制造整体解决方案.pptx
recommend-type

在Ubantu18.04中搭建Gazebo仿真环境.zip

在Ubantu18.04中搭建Gazebo仿真环境
recommend-type

2023-04-06-项目笔记 - 第一百七十五阶段 - 4.4.2.173全局变量的作用域-173 -2024.06.25

2023-04-06-项目笔记-第一百七十五阶段-课前小分享_小分享1.坚持提交gitee 小分享2.作业中提交代码 小分享3.写代码注意代码风格 4.3.1变量的使用 4.4变量的作用域与生命周期 4.4.1局部变量的作用域 4.4.2全局变量的作用域 4.4.2.1全局变量的作用域_1 4.4.2.173局变量的作用域_173- 2024-06-25
recommend-type

Android应用多抽屉界面效果实现

这是关于Android平台上实现多抽屉效果的资源文件,其界面类似于老版QQ的应用方式。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。