pycharm里神经网络代码实例
时间: 2023-07-26 22:39:12 浏览: 103
好的,我可以给你一个简单的神经网络代码实例,这是一个使用PyTorch构建的简单的全连接神经网络(Fully Connected Neural Network):
```python
import torch
import torch.nn as nn
import torch.optim as optim
# 定义神经网络模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(784, 128)
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, 10)
def forward(self, x):
x = x.view(-1, 784)
x = nn.functional.relu(self.fc1(x))
x = nn.functional.relu(self.fc2(x))
x = nn.functional.softmax(self.fc3(x), dim=1)
return x
# 准备数据
train_data = ...
train_labels = ...
# 创建神经网络模型
net = Net()
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# 训练模型
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(train_data, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 1000 == 999:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 1000))
running_loss = 0.0
print('Finished Training')
```
这个代码实例中,我们首先定义了一个包含三个全连接层的神经网络模型,然后使用PyTorch内置的损失函数和优化器进行训练。在训练过程中,我们会输出每1000个batch的平均损失值,以便观察模型的训练情况。
阅读全文