蒙特卡洛博弈树五子棋代码
时间: 2023-10-09 18:06:45 浏览: 106
五子棋的代码
以下是一个简单的蒙特卡洛博弈树五子棋代码的示例:
```python
import random
class Node:
def __init__(self, move=None, parent=None, state=None):
self.move = move
self.parent = parent
self.children = []
self.wins = 0
self.visits = 0
self.untried_moves = state.get_legal_moves()
self.player = state.current_player
def select_child(self):
best_score = -1
best_child = None
for child in self.children:
score = child.wins / child.visits + (2 * math.log(self.visits) / child.visits)**0.5
if score > best_score:
best_score = score
best_child = child
return best_child
def expand(self, state):
move = random.choice(self.untried_moves)
new_state = state.move(move)
new_node = Node(move=move, parent=self, state=new_state)
self.untried_moves.remove(move)
self.children.append(new_node)
return new_node
def update(self, result):
self.visits += 1
self.wins += result
class MonteCarlo:
def __init__(self, state, time_budget=10):
self.root = Node(state=state)
self.time_budget = time_budget
def search(self):
end_time = time.time() + self.time_budget
while time.time() < end_time:
node = self.select_node(self.root)
result = self.rollout(node.state)
self.backpropagate(node, result)
return self.best_move()
def select_node(self, node):
while not node.untried_moves and node.children:
node = node.select_child()
if node.untried_moves:
return node.expand(node.state)
else:
return node
def rollout(self, state):
player = state.current_player
while not state.is_terminal():
move = random.choice(state.get_legal_moves())
state = state.move(move)
if state.winner == player:
return 1
elif state.winner == 0:
return 0.5
else:
return 0
def backpropagate(self, node, result):
while node:
node.update(result)
node = node.parent
def best_move(self):
best_score = -1
best_move = None
for child in self.root.children:
score = child.wins / child.visits
if score > best_score:
best_score = score
best_move = child.move
return best_move
```
这个示例代码使用了一个 `Node` 类来表示蒙特卡洛树中的每个节点,其中包含一个棋步、一个父节点、一个子节点列表、胜利次数和访问次数等信息。还有一个 `MonteCarlo` 类来实现蒙特卡洛树搜索的过程,其中包括节点选择、扩展、模拟和回传等操作。最终可以通过调用 `search` 方法来得到最佳棋步。
阅读全文