l = np.array(df).tolist()

时间: 2023-05-11 17:07:05 浏览: 70
这是一个将 Pandas DataFrame 转换为 Python 列表的代码,其中 np.array() 是将 DataFrame 转换为 NumPy 数组,tolist() 是将 NumPy 数组转换为 Python 列表。
相关问题

X2=[] X3=[] X4=[] X5=[] X6=[] X7=[] X1=[i for i in range(1,24) for j in range(128)] X1=X1[:2928] df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(3,)) X2=df.values.tolist() x2=[] x21=[] for i in X2: if X2.index(i)<=2927: x2.append(i) else: x21.append(i) # x2=x2[:len(x21)] df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(4,)) X3=df.values.tolist() x3=[] x31=[] for i in X3: if X3.index(i)<=2927: x3.append(i) else: x31.append(i) # x3=x3[:len(x31)] df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(5,)) X4=df.values.tolist() x4=[] x41=[] for i in X4: if X4.index(i)<=2927: x4.append(i) else: x41.append(i) # x4=x4[:len(x41)] df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(6,)) X5=df.values.tolist() x5=[] x51=[] for i in X5: if X5.index(i)<=2927: x5.append(i) else: x51.append(i) # x5=x5[:len(x51)] df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(7,)) X6=df.values.tolist() x6=[] x61=[] for i in X6: if X6.index(i)<=2927: x6.append(i) else: x61.append(i) # x6=x6[:len(x61)] df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(8,)) X7=df.values.tolist() x7=[] x71=[] for i in X7: if X7.index(i)<=2927: x7.append(i) else: x71.append(i) # x7=x7[:len(x71)]np.random.seed(42) q=np.array(X1) w=np.array(x2) e=np.array(x3) r=np.array(x4) t=np.array(x5) p=np.array(x6) u=np.array(x7) eps=np.random.normal(0,0.05,152) X=np.c_[q,w,e,r,t,p,u] beta=[0.1,0.15,0.2,0.5,0.33,0.45,0.6] y=np.dot(X,beta) X_model=sm.add_constant(X) model=sm.OLS(y,X_model) results=model.fit() print(results.summary())具体代码如下,要怎么修改?

根据你的代码,报错是由于有些数组在第0维上的大小不匹配,导致无法使用`np.c_`函数进行连接。具体来说,`x2`、`x3`、`x4`、`x5`、`x6`、`x7`这些数组在第0维上的大小都是5808,而`X1`数组在第0维上的大小是2928,因此它们无法在列方向上进行连接。 为了解决这个问题,你需要将`X1`数组的大小调整为5808,可以使用`np.repeat`函数将`X1`中的每个元素重复2次,以便与其他数组在第0维上的大小相匹配。修改后的代码如下所示: ``` import numpy as np import pandas as pd import statsmodels.api as sm X1 = np.repeat(np.arange(1, 24), 256) # 将2928个元素重复2次,形成大小为5808的数组 df = pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx', header=0, usecols=[3, 4, 5, 6, 7, 8]) X2, X3, X4, X5, X6, X7 = [df.values[:, i] for i in range(6)] np.random.seed(42) q, w, e, r, t, p, u = X1, X2, X3, X4, X5, X6, X7 eps = np.random.normal(0, 0.05, 152) X = np.c_[q, w, e, r, t, p, u] beta = [0.1, 0.15, 0.2, 0.5, 0.33, 0.45, 0.6] y = np.dot(X, beta) X_model = sm.add_constant(X) model = sm.OLS(y, X_model) results = model.fit() print(results.summary()) ``` 修改后的代码中,我使用了`np.repeat`函数将`X1`中的每个元素重复2次,形成了大小为5808的数组。然后,我将`X2`到`X7`的读取操作简化为了一行代码,使用了一个列表推导式和`df.values`属性来读取这些列。最后,我将所有变量传递给`np.c_`函数进行连接。 希望这个修改可以帮助你解决问题。

import numpy as np import pylab as pl import pandas as pd from sklearn.linear_model import Ridge from sklearn.metrics import mean_squared_error from sklearn.model_selection import train_test_split X2=[] X3=[] X4=[] X5=[] X6=[] X7=[] X1=[i for i in range(1,24) for j in range(128)] df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(3,)) X2=df.values.tolist() x2=[] x21=[] for i in X2: if X2.index(i)<=2927: #两个单元楼的分隔数 x2.append(i) else: x21.append(i) df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(4,)) X3=df.values.tolist() x3=[] x31=[] for i in X3: if X3.index(i)<=2927: x3.append(i) else: x31.append(i) df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(5,)) X4=df.values.tolist() x4=[] x41=[] for i in X4: if X4.index(i)<=2927: x4.append(i) else: x41.append(i) df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(6,)) X5=df.values.tolist() x5=[] x51=[] for i in X5: if X5.index(i)<=2927: x5.append(i) else: x51.append(i) df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(7,)) X6=df.values.tolist() x6=[] x61=[] for i in X6: if X6.index(i)<=2927: x6.append(i) else: x61.append(i) df=pd.read_excel('C:/Users/86147/OneDrive/文档/777.xlsx',header=0,usecols=(8,)) X7=df.values.tolist() x7=[] x71=[] for i in X7: if X7.index(i)<=2927: x7.append(i) else: x71.append(i) np.random.seed(42) q=np.array(X1[:2922]) w=np.array(x21[:2922]) e=np.array(x31[:2922]) r=np.array(x41[:2922]) t=np.array(x51[:2922]) p=np.array(x61[:2922]) u=np.array(x71[:2922]) eps=np.random.normal(0,0.05,152) X=np.c_[q,w,e,r,t,p,u] beta=[0.1,0.15,0.2,0.5,0.33,0.45,0.6] y=np.dot(X,beta)X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) alpha = 0.1 # 设置岭回归的惩罚参数 ridge = Ridge(alpha=alpha) ridge.fit(X_train, y_train) y_pred = ridge.predict(X_test) mse = mean_squared_error(y_test, y_pred) print('MSE:', mse) coef = ridge.coef_ # 计算岭回归的系数 intercept = ridge.intercept_ # 计算岭回归的截距 print('Coefficients:', coef) print('Intercept:', intercept)

好的,如果要保留时间序列的前提下更改代码,可以考虑以下几点: 1. 由于时间序列x1已经在代码中生成,可以不用再重新生成。 2. 如果数据量足够大,可以考虑将数据随机分为训练集和测试集,这样可以更好地评估模型的性能。在代码中,可以将数据集随机分割为训练集和测试集,例如: ``` X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) ``` 其中,X和y分别是特征矩阵和标签向量。 3. 在岭回归模型的训练中,可以考虑选择最优的惩罚参数alpha。可以使用交叉验证的方法来选择最优的alpha值。例如: ``` from sklearn.model_selection import GridSearchCV param_grid = [{'alpha': np.logspace(-3, 3, 13)}] ridge = Ridge() grid_search = GridSearchCV(ridge, param_grid, cv=5, scoring='neg_mean_squared_error') grid_search.fit(X_train, y_train) alpha = grid_search.best_params_['alpha'] ``` 这里使用了sklearn中的GridSearchCV函数,通过交叉验证来选择最优的alpha值,从而得到更好的模型效果。 4. 最后,可以输出模型的系数和截距,以及评估指标MSE等信息。例如: ``` coef = ridge.coef_ intercept = ridge.intercept_ print('Coefficients:', coef) print('Intercept:', intercept) y_pred = ridge.predict(X_test) mse = mean_squared_error(y_test, y_pred) print('MSE:', mse) ``` 这样可以更好地了解模型的性能和参数。

相关推荐

修改代码使其能够正确运行。import pandas as pd import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn.preprocessing import MinMaxScaler import cv2 import open3d as o3d from skimage import color import colour from scipy.spatial import ConvexHull def convert_data(data): res=[] data=data.tolist() for d in data: res.append(tuple(d)) # print(res) return res def load_data_and_plot_scatter(path1="1号屏srgb+rgb16预热10分钟切换0.5s.csv"): df1 = pd.read_csv(path1)[["X", "Y", "Z", "R", "G", "B"]] X1 = df1["X"].values Y1 = df1["Y"].values Z1 = df1["Z"].values df1_c = df1[["R", "G", "B"]].values / 255.0 XYZT = np.array([X1,Y1,Z1]) XYZ = np.transpose(XYZT) ABL = colour.XYZ_to_Lab(XYZ) LABT = np.array([ABL[:,1], ABL[:,2], ABL[:,0]]) LAB = np.transpose(LABT) # 将 numpy 数组转换为 open3d 中的 PointCloud 类型 pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(LAB) # 估计点云法向量 pcd.estimate_normals() # 计算点云的凸包表面 mesh = o3d.geometry.TriangleMesh.create_from_point_cloud_alpha_shape(pcd, alpha=0.1) mesh.compute_vertex_normals() # 获取凸包表面上的点的坐标 surface_points = np.asarray(mesh.vertices) # 显示点云的凸包表面 o3d.visualization.draw_geometries([mesh]) # 创建一个 3D 坐标 fig = plt.figure() # ax = Axes3D(fig) ax = plt.axes(projection='3d') ax.scatter(LAB[:,0], LAB[:,1], LAB[:,2], c=df1_c) # # 设置坐标轴标签 ax.set_xlabel('a* Label') ax.set_ylabel('b* Label') ax.set_zlabel('L Label') # 显示图形 plt.show() if __name__ == "__main__": load_data_and_plot_scatter()

import pandas as pd import numpy as np # 计算用户对歌曲的播放比例 triplet_dataset_sub_song_merged_sum_df = triplet_dataset_sub_song_mergedpd[['user', 'listen_count']].groupby('user').sum().reset_index() triplet_dataset_sub_song_merged_sum_df.rename(columns={'listen_count': 'total_listen_count'}, inplace=True) triplet_dataset_sub_song_merged = pd.merge(triplet_dataset_sub_song_mergedpd, triplet_dataset_sub_song_merged_sum_df) triplet_dataset_sub_song_mergedpd['fractional_play_count'] = triplet_dataset_sub_song_mergedpd['listen_count'] / triplet_dataset_sub_song_merged['total_listen_count'] # 将用户和歌曲编码为数字 small_set = triplet_dataset_sub_song_mergedpd user_codes = small_set.user.drop_duplicates().reset_index() song_codes = small_set.song.drop_duplicates().reset_index() user_codes.rename(columns={'index': 'user_index'}, inplace=True) song_codes.rename(columns={'index': 'song_index'}, inplace=True) song_codes['so_index_value'] = list(song_codes.index) user_codes['us_index_value'] = list(user_codes.index) small_set = pd.merge(small_set, song_codes, how='left') small_set = pd.merge(small_set, user_codes, how='left') # 将数据转换为稀疏矩阵形式 from scipy.sparse import coo_matrix mat_candidate = small_set[['us_index_value', 'so_index_value', 'fractional_play_count']] data_array = mat_candidate.fractional_play_count.values row_array = mat_candidate.us_index_value.values col_array = mat_candidate.so_index_value.values data_sparse = coo_matrix((data_array, (row_array, col_array)), dtype=float) # 使用SVD方法进行矩阵分解并进行推荐 from scipy.sparse import csc_matrix from scipy.sparse.linalg import svds import math as mt def compute_svd(urm, K): U, s, Vt = svds(urm, K) dim = (len(s), len(s)) S = np.zeros(dim, dtype=np.float32) for i in range(0, len(s)): S[i, i] = mt.sqrt(s[i]) U = csc_matrix(U, dtype=np.float32) S = csc_matrix(S, dtype=np.float32) Vt = csc_matrix(Vt, dtype=np.float32) return U, S, Vt def compute_estimated_matrix(urm, U, S, Vt, uTest, K, test): rightTerm = S * Vt max_recommendation = 250 estimatedRatings = np.zeros(shape=(MAX_UID, MAX_PID), dtype=np.float16) recomendRatings = np.zeros(shape=(MAX_UID, max_recommendation), dtype=np.float16) for userTest in uTest: prod = U[userTest, :] * rightTerm estimatedRatings[userTest, :] = prod.todense() recomendRatings[userTest, :] = (-estimatedRatings[userTest, :]).argsort()[:max_recommendation] return recomendRatings K = 50 urm = data_sparse MAX_PID = urm.shape[1] MAX_UID = urm.shape[0] U, S, Vt = compute_svd(urm, K) uTest = [4, 5, 6, 7, 8, 73, 23] # uTest=[1b5bb32767963cbc215d27a24fef1aa01e933025] uTest_recommended_items = compute_estimated_matrix(urm, U, S, Vt 继续将这段代码输出完整

将上述代码放入了Recommenders.py文件中,作为一个自定义工具包。将下列代码中调用scipy包中svd的部分。转为使用Recommenders.py工具包中封装的svd方法。给出修改后的完整代码。import pandas as pd import math as mt import numpy as np from sklearn.model_selection import train_test_split from Recommenders import * from scipy.sparse.linalg import svds from scipy.sparse import coo_matrix from scipy.sparse import csc_matrix # Load and preprocess data triplet_dataset_sub_song_merged = triplet_dataset_sub_song_mergedpd # load dataset triplet_dataset_sub_song_merged_sum_df = triplet_dataset_sub_song_merged[['user','listen_count']].groupby('user').sum().reset_index() triplet_dataset_sub_song_merged_sum_df.rename(columns={'listen_count':'total_listen_count'},inplace=True) triplet_dataset_sub_song_merged = pd.merge(triplet_dataset_sub_song_merged,triplet_dataset_sub_song_merged_sum_df) triplet_dataset_sub_song_merged['fractional_play_count'] = triplet_dataset_sub_song_merged['listen_count']/triplet_dataset_sub_song_merged['total_listen_count'] # Convert data to sparse matrix format small_set = triplet_dataset_sub_song_merged user_codes = small_set.user.drop_duplicates().reset_index() song_codes = small_set.song.drop_duplicates().reset_index() user_codes.rename(columns={'index':'user_index'}, inplace=True) song_codes.rename(columns={'index':'song_index'}, inplace=True) song_codes['so_index_value'] = list(song_codes.index) user_codes['us_index_value'] = list(user_codes.index) small_set = pd.merge(small_set,song_codes,how='left') small_set = pd.merge(small_set,user_codes,how='left') mat_candidate = small_set[['us_index_value','so_index_value','fractional_play_count']] data_array = mat_candidate.fractional_play_count.values row_array = mat_candidate.us_index_value.values col_array = mat_candidate.so_index_value.values data_sparse = coo_matrix((data_array, (row_array, col_array)),dtype=float) # Compute SVD def compute_svd(urm, K): U, s, Vt = svds(urm, K) dim = (len(s), len(s)) S = np.zeros(dim, dtype=np.float32) for i in range(0, len(s)): S[i,i] = mt.sqrt(s[i]) U = csc_matrix(U, dtype=np.float32) S = csc_matrix(S, dtype=np.float32) Vt = csc_matrix(Vt, dtype=np.float32) return U, S, Vt def compute_estimated_matrix(urm, U, S, Vt, uTest, K, test): rightTerm = S*Vt max_recommendation = 10 estimatedRatings = np.zeros(shape=(MAX_UID, MAX_PID), dtype=np.float16) recomendRatings = np.zeros(shape=(MAX_UID,max_recommendation ), dtype=np.float16) for userTest in uTest: prod = U[userTest, :]*rightTerm estimatedRatings[userTest, :] = prod.todense() recomendRatings[userTest, :] = (-estimatedRatings[userTest, :]).argsort()[:max_recommendation] return recomendRatings K=50 # number of factors urm = data_sparse MAX_PID = urm.shape[1] MAX_UID = urm.shape[0] U, S, Vt = compute_svd(urm, K) # Compute recommendations for test users # Compute recommendations for test users uTest = [1,6,7,8,23] uTest_recommended_items = compute_estimated_matrix(urm, U, S, Vt, uTest, K, True) # Output recommended songs in a dataframe recommendations = pd.DataFrame(columns=['user','song', 'score','rank']) for user in uTest: rank = 1 for song_index in uTest_recommended_items[user, 0:10]: song = small_set.loc[small_set['so_index_value'] == song_index].iloc[0] # Get song details recommendations = recommendations.append({'user': user, 'song': song['title'], 'score': song['fractional_play_count'], 'rank': rank}, ignore_index=True) rank += 1 display(recommendations)

最新推荐

60道关于Redis的常见面试题.pdf

- 1. 什么是 Redis?它的主要特点是什么? - 2. Redis 支持哪些数据结构?请详细描述每种数据结构的用途和特点。 - 3. 什么是缓存穿透?在使用 Redis 时,如何防止缓存穿透? - 4. 介绍 Redis 的持久化机制以及对比它们之间的区别。 - 5. 如何实现 Redis 的分布式锁?你了解的分布式锁有哪些实现方式? - 6. Redis 的数据淘汰策略有哪些?分别是如何工作的? - 7. 什么是 Redis 事务?它是如何实现的?与传统数据库事务有何不同? - 8. 如何设置 Redis 的主从复制?主从复制有什么优势和限制? - 9. Redis 支持的数据结构中,有哪些可以实现计数功能?请详细说明其使用场景。 - 10. 什么是 Redis Sentinel?它的作用是什么?如何配置和使用 Sentinel?

2024年社交媒体广告行业分析报告.pptx

2024年社交媒体广告行业分析报告.pptx

27页智慧街道信息化建设综合解决方案.pptx

智慧城市是信息时代城市管理和运行的必然趋势,但落地难、起效难等问题一直困扰着城市发展。为解决这一困境,27页智慧街道信息化建设综合解决方案提出了以智慧街道为节点的新一代信息技术应用方案。通过物联网基础设施、云计算基础设施、地理空间基础设施等技术工具,结合维基、社交网络、Fab Lab、Living Lab等方法,实现了全面透彻的感知、宽带泛在的互联、智能融合的应用,以及可持续创新的特征。适合具备一定方案编写能力基础,智慧城市行业工作1-3年的需求分析师或产品人员学习使用。 智慧城市发展困境主要表现为政策统一协调与部署难、基础设施与软硬件水平低、系统建设资金需求量大等问题。而智慧街道解决方案通过将大变小,即以街道办为基本节点,直接服务于群众,掌握第一手城市信息,促使政府各部门能够更加便捷地联动协作。街道办的建设优势在于有利于数据信息搜集汇总,项目整体投资小,易于实施。将智慧城市的发展重点从城市整体转移到了更具体、更为关键的街道层面上,有助于解决政策统一协调难题、提高基础设施水平、降低系统建设资金需求,从而推动智慧城市发展。 智慧城市建设方案是智慧街道信息化建设综合解决方案的核心内容。通过关注智慧城市发展思考、智慧街道解决方案、智慧街道方案优势、商务模式及成功案例等四个方面,27页的解决方案为学习者提供了丰富的知识内容。智慧城市的发展思考一方面指出了智慧城市的定义与特点,另一方面也提出了智慧城市的困境与解决方法,为学习者深入了解智慧城市发展提供了重要参考。而智慧街道解决方案部分则具体介绍了以街道办为节点的智慧城市建设方案,强调了其直接服务群众、政府联动机制、易于实施的优势。同时,商务模式及成功案例部分为学习者提供了相应的实践案例,从而使学习更加具体、有针对性。 智慧城市是基于云计算、物联网、大数据等新一代信息技术构建的智能城市管理和运营系统。通过27页智慧街道信息化建设综合解决方案的学习,学员可以掌握智慧城市的建设方案、技术架构、行业技术要求、现状分析等内容。智慧街道解决方案的内部大联动和外部微服务,以及商务模式及成功案例的展示,旨在帮助学员全面了解智慧城市发展的思路与方法。同时,27页的解决方案从政策难题、基础设施要求、资金需求等方面提出解决办法,为智慧城市建设提供了切实可行的路径。 总的来说,27页智慧街道信息化建设综合解决方案是一份适合智慧城市行业工作者学习的资料,内容丰富、深入浅出,旨在帮助学员更好地掌握智慧城市建设的技术与方法。通过学习此方案,学员将能够系统地了解智慧城市的发展现状、解决困境与方法,为城市管理和运营提供更为科学、高效的方案,推动智慧城市的构建与发展。

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

使用Python Pandas进行数据类型转换

# 1. **引言** 数据类型转换在数据分析和处理中扮演着至关重要的角色。通过正确的数据类型转换,我们可以提高数据处理的效率和准确性,确保数据分析的准确性和可靠性。Python Pandas库作为一个强大的数据处理工具,在数据类型转换方面具有独特优势,能够帮助我们轻松地处理各种数据类型转换需求。通过安装和导入Pandas库,我们可以利用其丰富的功能和方法来进行数据类型转换操作,从而更好地处理数据,提高数据处理的效率和准确性。在接下来的内容中,我们将深入探讨数据类型转换的基础知识,学习Python中数据类型转换的方法,以及介绍一些高级技巧和应用案例。 # 2. 数据类型转换基础 ####

我现在有两台电脑一个IP是192.168.88.3,一个是192.168.88.4.我现在将88.4改成了88.3,然后再将IP地址还原。这个时候88.3无法访问,该如何处理

在您将IP地址从192.168.88.4 改回 192.168.88.3 后,如果您无法访问192.168.88.3,可能是因为网络中的其他设备或服务已经占用了该IP地址。为了解决这个问题,您可以尝试以下步骤: 1. 检查网络连接:确保您的计算机与网络连接正常,以防止其他问题导致无法访问。 2. 确认IP地址:确保您的计算机的IP地址已经成功更改回192.168.88.3。您可以通过命令提示符或网络设置界面来确认。 3. 检查其他设备:检查您网络中的其他设备,确保没有其他设备正在使用相同的IP地址。如果有其他设备使用了相同的IP地址,将其更改为不同的IP地址,以避免冲突。 4. 重启路由器:

计算机二级Ms-Office选择题汇总.doc

析 b)概念设计 c)逻辑设计 d)物理设计 9.在Excel中,要隐藏一个工作表,可以使用的方法是(  )。a)在“文件”菜单中选择“隐藏工作表” b)右键点击工作表标签,选择“隐藏” c)在“视图”菜单中选择“隐藏工作表” d)在工作表的属性中设置隐藏属性 10.Word中插入的对象包括(  )。a)图片、表格、图表 b)音频、视频、动画 c)超链接、书签、目录 d)文本框、形状、公式 11.PowerPoint中设计幻灯片的模板是指(  )。a)样式和颜色的组合 b)幻灯片的排列方式 c)内容的布局方式 d)文字和图形的组合形式 12.在Excel中,可以对数据进行排序的功能不包括(  )。a)按字母顺序排序 b)按数字大小排序 c)按日期排序 d)按颜色排序 13.在Excel中,公式“=SUM(A1:A10)”的作用是(  )。a)求A1到A10这几个单元格的和 b)将A1与A10相加 c)求A1与A10之间各单元格的和 d)将A1到A10这几个单元格相加 14.PowerPoint中可以设置幻灯片的切换方式,包括(  )。a)无、淡入淡出、擦除 b)上下、左右、中心 c)从小到大、从大到小、延展 d)翻页、盒子、轮盘 15.在Word中,可以实现对段落的格式设置的功能不包括(  )。a)对齐方式 b)首行缩进 c)行间距 d)列数调整 16.Excel中图表的类型不包括(  )。a)饼图 b)折线图 c)雷达图 d)热力图 17.PowerPoint中可以添加的多媒体元素包括(  )。a)图片、音频、视频 b)表格、图表、图形 c)超链接、动画、形状 d)背景音乐、PPT模板、主题颜色 18.在Word中,插入表格的方法不包括(  )。a)绘制 b)插入 c)表格快速填充 d)拷贝粘贴 19.在Excel中,可以使用的函数不包括(  )。a)求和函数 b)平均函数 c)最大值函数 d)删除函数 20.PowerPoint中可以设置的自动排版方式包括(  )。a)标题居中、标题靠左 b)标题居中、文本居左 c)标题居左、文本居右 d)标题居下、文本居上" 这段文本列举了计算机二级Ms-Office选择题中的20个问题,涵盖了Excel、Word和PowerPoint等办公软件的常见操作和功能。选手可以根据这些问题展开描述,介绍每个问题对应的知识点以及解答方法,从而深入探讨计算机二级Ms-Office的相关知识。同时,可以结合具体案例或实际操作步骤,帮助读者更好地理解和掌握这些技能。最终生成的描述应该全面、详细,并且严谨准确,使读者对计算机二级Ms-Office有一个全面的了解。

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依

优化大型数据集的内存使用方法

# 1. 了解大型数据集的内存限制 在处理大型数据集时,了解内存限制至关重要。数据集规模的定义受数据记录数、字段数和数据类型等影响因素制约。内存限制常见问题包括内存溢出和超出可用内存极限,这可能导致程序崩溃或运行缓慢。为有效优化内存使用,需采取相应策略和措施,如分批处理数据集、延迟加载数据等。通过选择适合数据集大小的数据结构,利用内存对齐和填充等内存优化技术,可以有效降低内存消耗。此外,高效的内存释放策略和监控优化内存使用也是关键。深入了解大型数据集内存限制,有助于提升数据处理效率,并为未来的内存优化工作奠定基础。 # 2. 优化数据处理流程 ### 2.1 分批处理大型数据集 在处理

要想使用@autowired必须把类交个ioc容器吗

是的,要使用@Autowired注解进行依赖注入,需要将类交给IOC容器管理。IOC(Inversion of Control)控制反转是Spring框架的核心特性之一,它可以帮助我们管理对象的生命周期和依赖关系。通过将类交给IOC容器管理,容器会自动帮助我们实例化对象并解决对象之间的依赖关系,从而使得@Autowired注解可以生效。