用Python举例说明卡方分箱原理
时间: 2023-05-11 09:05:19 浏览: 134
卡方分箱原理是一种常用的特征离散化方法,它的基本思想是将连续的数值型变量离散化成若干个区间,然后用每个区间的卡方值作为该区间的权重,从而实现特征的离散化。具体实现过程如下:
1. 将连续的数值型变量按照一定的分割点划分成若干个区间。
2. 对于每个区间,统计样本在该区间内的数量和期望数量,计算出该区间的卡方值。
3. 将所有区间的卡方值相加,得到特征的卡方值。
4. 根据特征的卡方值,选择合适的分割点,将特征离散化成若干个区间。
Python中可以使用pandas和numpy库来实现卡方分箱,具体实现方法可以参考以下代码:
import pandas as pd
import numpy as np
# 生成测试数据
data = pd.DataFrame({'x': np.random.normal(0, 1, 1000)})
# 将x离散化成10个区间
data['x_bin'] = pd.cut(data['x'], bins=10)
# 计算每个区间的卡方值
observed = pd.crosstab(data['x_bin'], columns='count')
expected = np.tile(observed.sum(axis=0), (observed.shape[0], 1)) / observed.sum()
chi2 = ((observed - expected) ** 2 / expected).sum()
# 根据卡方值选择合适的分割点
bins = np.histogram(data['x'], bins='auto')[1]
chi2_values = []
for i in range(1, len(bins)):
x1 = data[data['x'] <= bins[i - 1]]['x_bin']
x2 = data[data['x'] > bins[i - 1]]['x_bin']
observed = pd.crosstab(x1, x2)
expected = np.tile(observed.sum(axis=0), (observed.shape[0], 1)) / observed.sum()
chi2_values.append(((observed - expected) ** 2 / expected).sum())
best_idx = np.argmax(chi2_values)
best_chi2 = chi2_values[best_idx]
best_bin = (bins[best_idx], bins[best_idx + 1])
阅读全文