使用信号量机制实现:进程A 和B共享浮点数组data[1000], 它们共同完成对data中浮点数 据的累加计算,由进程A输出 最终结果

时间: 2023-05-29 15:02:27 浏览: 61
下面是使用信号量机制实现进程A和B共享浮点数组data[1000]的代码: ``` #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <sys/sem.h> #define SEM_MUTEX 0 #define SEM_FULL 1 union semun { int val; struct semid_ds *buf; unsigned short *array; }; int semid; float data[1000]; void init_semaphores() { union semun arg; unsigned short values[2] = {1, 0}; // binary semaphores arg.array = values; if ((semid = semget(IPC_PRIVATE, 2, 0666 | IPC_CREAT)) == -1) { perror("semget"); exit(1); } semctl(semid, 0, SETALL, arg); } void remove_semaphores() { if (semctl(semid, 0, IPC_RMID, NULL) == -1) { perror("semctl"); exit(1); } } void wait_semaphore(int semindex) { struct sembuf sb; sb.sem_num = semindex; sb.sem_op = -1; sb.sem_flg = SEM_UNDO; if (semop(semid, &sb, 1) == -1) { perror("semop"); exit(1); } } void signal_semaphore(int semindex) { struct sembuf sb; sb.sem_num = semindex; sb.sem_op = 1; sb.sem_flg = SEM_UNDO; if (semop(semid, &sb, 1) == -1) { perror("semop"); exit(1); } } void process_A() { int i; float sum = 0.0; for (i = 0; i < 1000; i++) { wait_semaphore(SEM_MUTEX); // acquire the mutex semaphore data[i] += 1.0; // increment the data array element sum += data[i]; // accumulate the sum signal_semaphore(SEM_MUTEX); // release the mutex semaphore } printf("Process A result: %f\n", sum); } void process_B() { int i; for (i = 0; i < 1000; i++) { wait_semaphore(SEM_MUTEX); // acquire the mutex semaphore data[i] += 2.0; // increment the data array element signal_semaphore(SEM_FULL); // release the full semaphore signal_semaphore(SEM_MUTEX); // release the mutex semaphore } } int main() { init_semaphores(); pid_t pid; if ((pid = fork()) == -1) { perror("fork"); exit(1); } else if (pid == 0) { // child process B process_B(); } else { // parent process A process_A(); wait(NULL); remove_semaphores(); } return 0; } ``` 本例中使用了两个二进制信号量:一个表示互斥(SEMAPHORE_MUTEX),另一个表示缓存区是否已满(SEMAPHORE_FULL)。 进程A和B均可以访问data[]数组。进程A对数组进行累加计算,并输出最终结果;进程B对数组进行累加,每次累加完成后发送一个缓存区已满信号,通知进程A可对数组进行处理。信号量机制确保了进程A和B之间对data[]数组的访问顺序。

相关推荐

最新推荐

recommend-type

c语言中获取整数和浮点数的符号位

本文主要介绍c语言中如何获取整数和浮点数的符号位问题,感性趣的朋友可以看看。
recommend-type

IEEE标准的32位浮点数转换为十进制的计算方法

工作中碰到的一个小问题,经过了一番研究,终于搞明白了,为了以后大家不再挠头,写了这个供大家参考。其中涉及到MODTEST 软件 MODBUS协议 IEEE32位二进制浮点数与十进制小数转换的方法等内容。
recommend-type

Shell脚本处理浮点数的运算和比较实例

主要介绍了Shell脚本处理浮点数的运算和比较实例,文中分别使用了bc或awk实现,需要的朋友可以参考下
recommend-type

go浮点数转字符串保留小数点后N位的完美解决方法

最近在项目中碰到很多次float转string,同时要求保留小数点后几位,并且去掉小数点后0的场景 虽然问题很简单,但是隔了挺久没处理这种场景就有些生疏了,自己也搜了一下,很多回答都不太满意。这里贴一下自己的做法...
recommend-type

JS判断是否为数字,是否为整数,是否为浮点数的代码

正则表达式方法 代码如下: function checkRate(input) { var re = /^[0-9]+.?[0-9]*$/; //判断字符串是否为数字 //判断正整数 /^[1-9]+[0-9]*]*$/ if (!re.test(input.rate.value)) { alert&#40;...
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

info-center source defatult

这是一个 Cisco IOS 命令,用于配置 Info Center 默认源。Info Center 是 Cisco 设备的日志记录和报告工具,可以用于收集和查看设备的事件、警报和错误信息。该命令用于配置 Info Center 默认源,即设备的默认日志记录和报告服务器。在命令行界面中输入该命令后,可以使用其他命令来配置默认源的 IP 地址、端口号和协议等参数。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。