朴素贝叶斯垃圾邮件文档识别代码
时间: 2023-09-28 17:13:40 浏览: 102
以下是一个简单的Python实现朴素贝叶斯垃圾邮件文档识别的代码:
```python
import os
import string
# 定义停用词表
stopwords = []
# 加载停用词表
with open('stopwords.txt', 'r', encoding='utf-8') as f:
for line in f:
stopwords.append(line.strip())
# 定义训练数据集和测试数据集的路径
train_dir = 'train'
test_dir = 'test'
# 定义文档类别
categories = os.listdir(train_dir)
# 定义词典
words_dict = {}
# 统计词频
def count_words(filepath):
words_dict = {}
with open(filepath, 'r', encoding='utf-8') as f:
for line in f:
line = line.strip()
for word in line.split():
word = word.strip(string.punctuation)
if word and word not in stopwords:
if word not in words_dict:
words_dict[word] = 0
words_dict[word] += 1
return words_dict
# 训练朴素贝叶斯分类器
def train():
global words_dict
for category in categories:
category_path = os.path.join(train_dir, category)
for filename in os.listdir(category_path):
filepath = os.path.join(category_path, filename)
words_dict_temp = count_words(filepath)
for word in words_dict_temp:
if word not in words_dict:
words_dict[word] = [0] * len(categories)
words_dict[word][categories.index(category)] += words_dict_temp[word]
# 预测分类
def predict(filepath):
words_dict_temp = count_words(filepath)
scores = [0] * len(categories)
for word in words_dict_temp:
if word in words_dict:
for i in range(len(categories)):
scores[i] += words_dict[word][i]
return categories[scores.index(max(scores))]
# 测试分类器
def test():
total = 0
correct = 0
for category in categories:
category_path = os.path.join(test_dir, category)
for filename in os.listdir(category_path):
filepath = os.path.join(category_path, filename)
total += 1
if predict(filepath) == category:
correct += 1
print('Accuracy:', correct / total)
if __name__ == '__main__':
train()
test()
```
这个代码实现了一个简单的朴素贝叶斯垃圾邮件文档识别器,它可以从训练数据集中学习每个单词在不同类别中的出现频率,并根据测试数据集中的文档来预测文档所属的类别。注意,在实际应用中,还需要对模型进行优化和改进,以提高准确率和鲁棒性。
阅读全文