多式联运路径规划的遗传算法代码
时间: 2023-09-02 20:05:36 浏览: 175
以下是一个基于遗传算法的多式联运路径规划的 Python 代码示例:
```python
import numpy as np
# 定义常量
POP_SIZE = 50 # 种群数量
CHROM_SIZE = 20 # 染色体长度
CROSS_RATE = 0.8 # 交叉概率
MUTATION_RATE = 0.02 # 变异概率
N_GENERATIONS = 500 # 迭代次数
N_TRUCKS = 5 # 货车数量
N_CUSTOMERS = 10 # 客户数量
N_DEPOTS = 3 # 集散地数量
# 定义距离矩阵
distances = np.random.randint(1, 100, size=(N_CUSTOMERS+N_DEPOTS, N_CUSTOMERS+N_DEPOTS))
for i in range(N_CUSTOMERS+N_DEPOTS):
for j in range(N_CUSTOMERS+N_DEPOTS):
if i == j:
distances[i,j] = 0
elif i < N_DEPOTS and j < N_DEPOTS:
distances[i,j] = 0
elif i >= N_DEPOTS and j >= N_DEPOTS:
distances[i,j] = 0
else:
distances[j,i] = distances[i,j]
# 定义种群类
class Population:
def __init__(self, size):
self.size = size
self.chroms = np.zeros((size, CHROM_SIZE), dtype=int)
for i in range(size):
self.chroms[i] = np.random.permutation(range(CHROM_SIZE))
def fitness(self):
fitness = np.zeros(self.size)
for i in range(self.size):
chrom = self.chroms[i]
fitness[i] = self.calc_fitness(chrom)
return fitness
def calc_fitness(self, chrom):
# 将染色体分割成多个路径
paths = np.split(chrom, np.where(chrom == 0)[0])
paths = [path for path in paths if len(path) > 1]
# 计算每个路径的距离
distances_sum = 0
for path in paths:
start = path[0]
end = path[-1]
distances_sum += distances[start, end]
for i in range(len(path)-1):
distances_sum += distances[path[i], path[i+1]]
# 计算每个货车的装载量
loads = np.zeros(N_TRUCKS)
for path in paths:
for i in path[1:-1]:
loads[i-1] += 1
overload = sum([max(0, loads[i]-10) for i in range(N_TRUCKS)])
# 计算适应度函数值
fitness = 1 / (distances_sum + overload + 1)
return fitness
def select(self, fitness):
idx = np.random.choice(range(self.size), size=self.size, replace=True, p=fitness/fitness.sum())
return self.chroms[idx]
def crossover(self, parent, pop):
if np.random.rand() < CROSS_RATE:
# 随机选择另一个父母
i = np.random.randint(0, len(pop))
mate = pop[i]
# 随机选择交叉点
cx_point1 = np.random.randint(0, CHROM_SIZE)
cx_point2 = np.random.randint(0, CHROM_SIZE-1)
if cx_point2 >= cx_point1:
cx_point2 += 1
# 交叉
mask = np.zeros(CHROM_SIZE, dtype=bool)
mask[cx_point1:cx_point2] = True
tmp1, tmp2 = parent[~mask], mate[~mask]
offspring1, offspring2 = np.zeros(CHROM_SIZE, dtype=int), np.zeros(CHROM_SIZE, dtype=int)
offspring1[mask], offspring2[mask] = parent[mask], mate[mask]
offspring1[~mask], offspring2[~mask] = tmp2, tmp1
return offspring1, offspring2
else:
return parent, None
def mutate(self, offspring):
for i in range(CHROM_SIZE):
if np.random.rand() < MUTATION_RATE:
j = np.random.randint(0, CHROM_SIZE)
offspring[i], offspring[j] = offspring[j], offspring[i]
return offspring
def evolve(self):
fitness = self.fitness()
new_pop = np.zeros((self.size, CHROM_SIZE), dtype=int)
for i, parent in enumerate(self.select(fitness)):
offspring1, offspring2 = self.crossover(parent, self.chroms)
offspring = self.mutate(offspring1)
new_pop[i] = offspring
if offspring2 is not None and i+1 < self.size:
new_pop[i+1] = self.mutate(offspring2)
self.chroms = new_pop
# 初始化种群
pop = Population(POP_SIZE)
# 开始迭代
for i in range(N_GENERATIONS):
pop.evolve()
# 打印最优解
fitness = pop.fitness()
best_idx = np.argmax(fitness)
best_chrom = pop.chroms[best_idx]
paths = np.split(best_chrom, np.where(best_chrom == 0)[0])
paths = [path for path in paths if len(path) > 1]
print(f"Best Chromosome: {best_chrom}")
print(f"Best Fitness: {fitness[best_idx]}")
print(f"Paths: {paths}")
```
需要注意的是,上述代码仅为示例代码,并不保证能够得到最优解。实际应用中,需要根据具体情况进行参数调整和算法优化。
阅读全文