详细解释这段代码while costmax<costmin%满足条件costmax增加到min [costmax, S] = costgraph(KH,stepmax,desc,SigmaNew); if costmax<costmin costmin = costmax; SigmaNew = SigmaNew + stepmax * desc; %------------------------------- % Numerical cleaning %------------------------------- % SigmaNew(find(abs(SigmaNew<option.numericalprecision)))=0; % SigmaNew=SigmaNew/sum(SigmaNew); % SigmaNew =SigmaP; % project descent direction in the new admissible cone % keep the same direction of descent while cost decrease %desc = desc .* ( (SigmaNew>0) | (desc>0) ) ; desc = desc .* ( (SigmaNew>option.numericalprecision)|(desc>0)); desc(coord) = - sum(desc([[1:coord-1] [coord+1:end]])); ind = find(desc<0); if ~isempty(ind) stepmax = min(-(SigmaNew(ind))./desc(ind)); deltmax = stepmax; costmax = 0; else stepmax = 0; deltmax = 0; end end end

时间: 2023-12-27 17:03:04 浏览: 118
这段代码是一个循环,其中的条件为 `costmax<costmin`。如果满足这个条件,那么就会执行循环体内的代码,同时将 `costmax` 的值增加到 `costmin`。接下来,会调用 `costgraph()` 函数并传入参数,该函数会返回两个值,分别是 `costmax` 和 `S`。如果 `costmax` 小于 `costmin`,那么就将 `costmin` 的值更新为 `costmax`,并将 `SigmaNew` 的值增加到 `stepmax * desc`。接下来的代码是进行数值清理和投影操作,以确保结果仍在可接受的范围内。最后,根据 `desc` 的值计算步长 `stepmax`,然后更新 `deltmax` 和 `costmax` 的值。如果 `desc` 的值小于 0,则设置 `stepmax` 和 `deltmax` 的值为 0。如果不是,则计算 `stepmax` 和 `deltmax` 的值,并将 `costmax` 的值设置为 0。循环会一直执行,直到 `costmax` 不再小于 `costmin`。
相关问题

详细解释这段代码function [Sigma,S,CostNew] = graphupdate(KH,Sigma,GradNew,CostNew,option) gold = (sqrt(5)+1)/2 ; SigmaNew = SigmaInit= Sigma ; NormGrad = sum(abs(GradNew)); CostOld=CostNew=GradNew/NormGrad; [val,coord] = max(SigmaNew) ; GradNew = GradNew - GradNew(coord); desc = - GradNew.* ( (SigmaNew>0) | (GradNew<0) ); desc(coord) = - sum(desc); stepmin = 0; costmin = CostOld; costmax = 0; ind = find(desc<0); stepmax = min(-(SigmaNew(ind))./desc(ind)); deltmax = stepmax; if isempty(stepmax) || stepmax==0 Sigma = SigmaNew; return end if stepmax > 0.1 stepmax=0.1; end while costmax<costmin [costmax, S] = costgraph(KH,stepmax,desc,SigmaNew); if costmax<costmin costmin = costmax; SigmaNew = SigmaNew + stepmax * desc; desc = desc .* ( (SigmaNew>option.numericalprecision)|(desc>0)); desc(coord) = - sum(desc([[1:coord-1] [coord+1:end]])); ind = find(desc<0); if ~isempty(ind) stepmax = min(-(SigmaNew(ind))./desc(ind)); deltmax = stepmax; costmax = 0; else stepmax = 0; deltmax = 0; end end end Step = [stepmin stepmax]; Cost = [costmin costmax]; [val,coord] = min(Cost); while (stepmax-stepmin)>option.goldensearch_deltmax*(abs(deltmax)) && stepmax > eps stepmedr = stepmin+(stepmax-stepmin)/gold; stepmedl = stepmin+(stepmedr-stepmin)/gold; [costmedr, S1] = costgraph(KH,stepmedr,desc,SigmaNew); [costmedl, S2] = costgraph(KH,stepmedl,desc,SigmaNew); Step = [stepmin stepmedl stepmedr stepmax]; Cost = [costmin costmedl costmedr costmax]; [val,coord] = min(Cost); switch coord case 1 stepmax = stepmedl; costmax = costmedl; S = S2; case 2 stepmax = stepmedr; costmax = costmedr; S = S2; case 3 stepmin = stepmedl; costmin = costmedl; S = S2; case 4 stepmin = stepmedr; costmin = costmedr; S = S1; end end

这段代码实现了一个图更新算法,用于优化一个图的布局。具体而言,输入参数包括: - KH: 图的邻接矩阵; - Sigma: 布局矩阵,即每个点在二维空间中的坐标; - GradNew: 梯度向量,表示当前布局的梯度; - CostNew: 当前布局的代价; - option: 控制图更新算法的参数。 根据输入参数,该算法首先计算出当前梯度的模长NormGrad,并将GradNew除以该模长,以避免梯度大小对更新步长的影响。然后,算法依次进行以下步骤: 1. 初始化SigmaNew为当前布局,SigmaInit为当前布局的备份。 2. 找到SigmaNew中的最大值和对应的坐标coord,将GradNew中在该坐标上的梯度从GradNew中减去,以避免在该坐标方向上的更新。 3. 计算更新方向desc,其中对于SigmaNew中小于等于0的元素,不需要在该维度上进行更新;对于GradNew中小于0的元素,也不需要在该维度上进行更新。 4. 设置stepmin和stepmax为合适的初值,并计算在stepmax处的代价costmax和在stepmin处的代价costmin。如果desc中没有小于0的元素,则返回SigmaNew作为更新后的布局。 5. 在[stepmin, stepmax]区间内使用黄金分割法寻找代价最小的更新步长。具体而言,算法将该区间分成左右两个子区间,计算在每个子区间的中点处的代价,然后选择代价更小的子区间继续寻找。这个过程一直进行,直到更新步长的变化量小于设定的阈值goldensearch_deltmax或者步长stepmax小于一个极小值eps。 6. 最后返回更新后的布局矩阵Sigma、更新后的代价CostNew和更新后的图S。

function [Sigma,S,CostNew] = graphupdate(KH,Sigma,GradNew,CostNew,option) gold = (sqrt(5)+1)/2 ; SigmaNew = SigmaInit= Sigma ; NormGrad = sum(abs(GradNew)); CostOld=CostNew=GradNew/NormGrad; [val,coord] = max(SigmaNew) ; GradNew = GradNew - GradNew(coord); desc = - GradNew.* ( (SigmaNew>0) | (GradNew<0) ); desc(coord) = - sum(desc); stepmin = 0; costmin = CostOld; costmax = 0; ind = find(desc<0); stepmax = min(-(SigmaNew(ind))./desc(ind)); deltmax = stepmax; if isempty(stepmax) || stepmax==0 Sigma = SigmaNew; return end if stepmax > 0.1 stepmax=0.1; end while costmax<costmin [costmax, S] = costgraph(KH,stepmax,desc,SigmaNew); if costmax<costmin costmin = costmax; SigmaNew = SigmaNew + stepmax * desc; desc = desc .* ( (SigmaNew>option.numericalprecision)|(desc>0)); desc(coord) = - sum(desc([[1:coord-1] [coord+1:end]])); ind = find(desc<0); if ~isempty(ind) stepmax = min(-(SigmaNew(ind))./desc(ind)); deltmax = stepmax; costmax = 0; else stepmax = 0; deltmax = 0; end end end Step = [stepmin stepmax]; Cost = [costmin costmax]; [val,coord] = min(Cost); while (stepmax-stepmin)>option.goldensearch_deltmax*(abs(deltmax)) && stepmax > eps stepmedr = stepmin+(stepmax-stepmin)/gold; stepmedl = stepmin+(stepmedr-stepmin)/gold; [costmedr, S1] = costgraph(KH,stepmedr,desc,SigmaNew); [costmedl, S2] = costgraph(KH,stepmedl,desc,SigmaNew); Step = [stepmin stepmedl stepmedr stepmax]; Cost = [costmin costmedl costmedr costmax]; [val,coord] = min(Cost); switch coord case 1 stepmax = stepmedl; costmax = costmedl; S = S2; case 2 stepmax = stepmedr; costmax = costmedr; S = S2; case 3 stepmin = stepmedl; costmin = costmedl; S = S2; case 4 stepmin = stepmedr; costmin = costmedr; S = S1; end end

这段代码是一个用于更新图的算法,它使用了黄金分割法来找到最小化代价函数的步长。主要输入参数包括KH(图的邻接矩阵)、Sigma(节点的位置坐标)、GradNew(节点的梯度信息)、CostNew(节点代价函数值)和option(算法参数)。输出参数包括Sigma(更新后的节点位置坐标)、S(更新后的图形结构)和CostNew(更新后的节点代价函数值)。 该算法的核心思想是通过调整节点位置坐标来最小化整个图的代价函数。在每次迭代中,算法会计算当前节点位置的梯度信息,并根据梯度信息和当前节点位置坐标来计算出一个方向(desc),然后使用黄金分割法来找到最小化代价函数的步长。最终,通过更新节点位置坐标来更新整个图的结构,并计算出新的代价函数值。
阅读全文

相关推荐

ind = find(desc<0); stepmax = min(-(SigmaNew(ind))./desc(ind)); deltmax = stepmax; if isempty(stepmax) || stepmax==0 Sigma = SigmaNew; return end if stepmax > 0.1 stepmax=0.1; end %----------------------------------------------------- % Projected gradient %----------------------------------------------------- while costmax<costmin [costmax, S] = costgraph(KH,stepmax,desc,SigmaNew); if costmax<costmin costmin = costmax; SigmaNew = SigmaNew + stepmax * desc; %------------------------------- % Numerical cleaning %------------------------------- % SigmaNew(find(abs(SigmaNew<option.numericalprecision)))=0; % SigmaNew=SigmaNew/sum(SigmaNew); % SigmaNew =SigmaP; % project descent direction in the new admissible cone % keep the same direction of descent while cost decrease %desc = desc .* ( (SigmaNew>0) | (desc>0) ) ; desc = desc .* ( (SigmaNew>option.numericalprecision)|(desc>0)); desc(coord) = - sum(desc([[1:coord-1] [coord+1:end]])); ind = find(desc<0); if ~isempty(ind) stepmax = min(-(SigmaNew(ind))./desc(ind)); deltmax = stepmax; costmax = 0; else stepmax = 0; deltmax = 0; end end end %----------------------------------------------------- % Linesearch %----------------------------------------------------- Step = [stepmin stepmax]; Cost = [costmin costmax]; [val,coord] = min(Cost); % optimization of stepsize by golden search while (stepmax-stepmin)>option.goldensearch_deltmax*(abs(deltmax)) && stepmax > eps stepmedr = stepmin+(stepmax-stepmin)/gold; stepmedl = stepmin+(stepmedr-stepmin)/gold; [costmedr, S1] = costgraph(KH,stepmedr,desc,SigmaNew); [costmedl, S2] = costgraph(KH,stepmedl,desc,SigmaNew); Step = [stepmin stepmedl stepmedr stepmax]; Cost = [costmin costmedl costmedr costmax]; [val,coord] = min(Cost); switch coord case 1 stepmax = stepmedl; costmax = costmedl; S = S2; case 2 stepmax = stepmedr; costmax = costmedr; S = S2; case 3 stepmin = stepmedl; costmin = costmedl; S = S2; case 4 stepmin = stepmedr; costmin = costmedr; S = S1; end end %--------------------------------- % Final Updates %--------------------------------- CostNew = Cost(coord); step = Step(coord); % Sigma update if CostNew < CostOld SigmaNew = SigmaNew + step * desc; end Sigma = SigmaNew;

最新推荐

recommend-type

js实现数字从零慢慢增加到指定数字示例

在JavaScript中,实现数字从零慢慢增加到指定数字的效果,通常用于模拟计数动画,比如在网页中展示数据增长的过程。以下是一个详细的实现步骤和解释: 首先,我们需要一个HTML结构来展示数字,这里是一个简单的例子...
recommend-type

if判断语句 for循环 while循环

while循环则在满足某个条件时持续执行代码块,直到条件不再满足。基本语法: ```python while condition: # 只要condition为True,就执行这里的代码 # 通常在循环体内需要修改使condition变为False的变量,以避免...
recommend-type

简单掌握C++编程中的while与do-while循环语句使用

在C++编程中,循环语句是控制程序流程的关键元素,它们允许代码块重复执行,直到满足特定条件为止。本文将深入探讨两种常见的循环结构:`while`和`do-while`循环,以及它们的区别和使用场景。 首先,`while`循环是...
recommend-type

python1.使用while循环实现输出2-3+4-5+6...+100 的和_一个倔强的女孩的博客-CSDN博客_python1+2+3+4+5+6+…+100代码.pdf

2. 使用while循环,条件为number &lt;= 100。 3. 在while循环体中,检查number是否为偶数,如果是,则将number加到total中,如果不是,则将number减去total中。 4. 将number加1,继续下一轮循环。 5. 直到number大于100...
recommend-type

Python While循环语句实例演示及原理解析

这段代码会打印从0到8的数字,因为每次循环后`count`递增,直到达到9时条件不再满足,循环结束。 在`while`循环中,`continue`和`break`是非常重要的控制语句。`continue`用于跳过当前循环迭代的剩余部分并进入下一...
recommend-type

BottleJS快速入门:演示JavaScript依赖注入优势

资源摘要信息:"BottleJS是一个轻量级的依赖项注入容器,用于JavaScript项目中,旨在减少导入依赖文件的数量并优化代码结构。该项目展示BottleJS在前后端的应用,并通过REST API演示其功能。" BottleJS Playgound 概述: BottleJS Playgound 是一个旨在演示如何在JavaScript项目中应用BottleJS的项目。BottleJS被描述为JavaScript世界中的Autofac,它是依赖项注入(DI)容器的一种实现,用于管理对象的创建和生命周期。 依赖项注入(DI)的基本概念: 依赖项注入是一种设计模式,允许将对象的依赖关系从其创建和维护的代码中分离出来。通过这种方式,对象不会直接负责创建或查找其依赖项,而是由外部容器(如BottleJS)来提供这些依赖项。这样做的好处是降低了模块间的耦合,提高了代码的可测试性和可维护性。 BottleJS 的主要特点: - 轻量级:BottleJS的设计目标是尽可能简洁,不引入不必要的复杂性。 - 易于使用:通过定义服务和依赖关系,BottleJS使得开发者能够轻松地管理大型项目中的依赖关系。 - 适合前后端:虽然BottleJS最初可能是为前端设计的,但它也适用于后端JavaScript项目,如Node.js应用程序。 项目结构说明: 该仓库的src目录下包含两个子目录:sans-bottle和bottle。 - sans-bottle目录展示了传统的方式,即直接导入依赖并手动协调各个部分之间的依赖关系。 - bottle目录则使用了BottleJS来管理依赖关系,其中bottle.js文件负责定义服务和依赖关系,为项目提供一个集中的依赖关系源。 REST API 端点演示: 为了演示BottleJS的功能,该项目实现了几个简单的REST API端点。 - GET /users:获取用户列表。 - GET /users/{id}:通过给定的ID(范围0-11)获取特定用户信息。 主要区别在用户路由文件: 该演示的亮点在于用户路由文件中,通过BottleJS实现依赖关系的注入,我们可以看到代码的组织和结构比传统方式更加清晰和简洁。 BottleJS 和其他依赖项注入容器的比较: - BottleJS相比其他依赖项注入容器如InversifyJS等,可能更轻量级,专注于提供基础的依赖项管理和注入功能。 - 它的设计更加直接,易于理解和使用,尤其适合小型至中型的项目。 - 对于需要高度解耦和模块化的大规模应用,可能需要考虑BottleJS以外的解决方案,以提供更多的功能和灵活性。 在JavaScript项目中应用依赖项注入的优势: - 可维护性:通过集中管理依赖关系,可以更容易地理解和修改应用的结构。 - 可测试性:依赖项的注入使得创建用于测试的mock依赖关系变得简单,从而方便单元测试的编写。 - 模块化:依赖项注入鼓励了更好的模块化实践,因为模块不需关心依赖的来源,只需负责实现其定义的接口。 - 解耦:模块之间的依赖关系被清晰地定义和管理,减少了直接耦合。 总结: BottleJS Playgound 项目提供了一个生动的案例,说明了如何在JavaScript项目中利用依赖项注入模式改善代码质量。通过该项目,开发者可以更深入地了解BottleJS的工作原理,以及如何将这一工具应用于自己的项目中,从而提高代码的可维护性、可测试性和模块化程度。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【版本控制】:R语言项目中Git与GitHub的高效应用

![【版本控制】:R语言项目中Git与GitHub的高效应用](https://opengraph.githubassets.com/2abf032294b9f2a415ddea58f5fde6fcb018b57c719dfc371bf792c251943984/isaacs/github/issues/37) # 1. 版本控制与R语言的融合 在信息技术飞速发展的今天,版本控制已成为软件开发和数据分析中不可或缺的环节。特别是对于数据科学的主流语言R语言,版本控制不仅帮助我们追踪数据处理的历史,还加强了代码共享与协作开发的效率。R语言与版本控制系统的融合,特别是与Git的结合使用,为R语言项
recommend-type

RT-DETR如何实现在实时目标检测中既保持精度又降低计算成本?请提供其技术实现的详细说明。

为了理解RT-DETR如何在实时目标检测中保持精度并降低计算成本,我们必须深入研究其架构优化和技术细节。RT-DETR通过融合CNN与Transformer的优势,提出了一种混合编码器结构,这种结构采用了尺度内交互(AIFI)和跨尺度融合(CCFM)策略来提取和融合多尺度图像特征,这些特征能够提供丰富的视觉上下文信息,从而提升了模型的检测精度。 参考资源链接:[RT-DETR:实时目标检测中的新胜者](https://wenku.csdn.net/doc/1ehyj4a8z2?spm=1055.2569.3001.10343) 在编码器阶段,RT-DETR使用主干网络提取图像特征,然后通过
recommend-type

vConsole插件使用教程:输出与复制日志文件

资源摘要信息:"vconsole-outputlog-plugin是一个JavaScript插件,它能够在vConsole环境中输出日志文件,并且支持将日志复制到剪贴板或下载。vConsole是一个轻量级、可扩展的前端控制台,通常用于移动端网页的调试。该插件的安装依赖于npm,即Node.js的包管理工具。安装完成后,通过引入vConsole和vConsoleOutputLogsPlugin来初始化插件,之后即可通过vConsole输出的console打印信息进行日志的复制或下载操作。这在进行移动端调试时特别有用,可以帮助开发者快速获取和分享调试信息。" 知识点详细说明: 1. vConsole环境: vConsole是一个专为移动设备设计的前端调试工具。它模拟了桌面浏览器的控制台,并添加了网络请求、元素选择、存储查看等功能。vConsole可以独立于原生控制台使用,提供了一个更为便捷的方式来监控和调试Web页面。 2. 日志输出插件: vconsole-outputlog-plugin是一个扩展插件,它增强了vConsole的功能,使得开发者不仅能够在vConsole中查看日志,还能将这些日志方便地输出、复制和下载。这样的功能在移动设备上尤为有用,因为移动设备的控制台通常不易于使用。 3. npm安装: npm(Node Package Manager)是Node.js的包管理器,它允许用户下载、安装、管理各种Node.js的包或库。通过npm可以轻松地安装vconsole-outputlog-plugin插件,只需在命令行执行`npm install vconsole-outputlog-plugin`即可。 4. 插件引入和使用: - 首先创建一个vConsole实例对象。 - 然后创建vConsoleOutputLogsPlugin对象,它需要一个vConsole实例作为参数。 - 使用vConsole对象的实例,就可以在其中执行console命令,将日志信息输出到vConsole中。 - 插件随后能够捕获这些日志信息,并提供复制到剪贴板或下载的功能。 5. 日志操作: - 复制到剪贴板:在vConsole界面中,通常会有“复制”按钮,点击即可将日志信息复制到剪贴板,开发者可以粘贴到其他地方进行进一步分析或分享。 - 下载日志文件:在某些情况下,可能需要将日志信息保存为文件,以便离线查看或作为报告的一部分。vconsole-outputlog-plugin提供了将日志保存为文件并下载的功能。 6. JavaScript标签: 该插件是使用JavaScript编写的,因此它与JavaScript紧密相关。JavaScript是一种脚本语言,广泛用于网页的交互式内容开发。此插件的开发和使用都需要一定的JavaScript知识,包括对ES6(ECMAScript 2015)版本规范的理解和应用。 7. 压缩包子文件: vconsole-outputlog-plugin-main文件名可能是指该插件的压缩包或分发版本,通常包含插件的源代码、文档和可能的配置文件。开发者可以通过该文件名在项目中正确地引用和使用插件。 通过掌握这些知识点,开发者可以有效地在vConsole环境中使用vconsole-outputlog-plugin插件,提高移动端网页的调试效率和体验。