粒子群优化bp网络分类模型Matlab
时间: 2023-06-26 11:08:42 浏览: 112
粒子群优化(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,它可以用来求解复杂的非线性优化问题。在BP网络分类模型中,我们可以使用PSO算法来寻找最优的网络权值和偏置值,以提高分类的准确率。
下面是一个使用Matlab实现粒子群优化的BP网络分类模型的示例代码:
```matlab
% 导入数据集
load iris_dataset.mat
% 隐藏层神经元个数
hidden_size = 10;
% 学习率
learning_rate = 0.05;
% 最大迭代次数
max_iter = 1000;
% 粒子数
pop_size = 20;
% 初始化粒子群
for i = 1:pop_size
% 随机生成权重和偏置
w1 = randn(size(X_train, 2), hidden_size);
b1 = randn(1, hidden_size);
w2 = randn(hidden_size, 3);
b2 = randn(1, 3);
% 将权重和偏置打包成一个向量
p(i, :) = [w1(:)', b1, w2(:)', b2];
% 初始化速度为0
v(i, :) = zeros(1, length(p(i, :)));
end
% 计算初始适应度
for i = 1:pop_size
[loss, ~] = bp_forward(X_train, y_train, reshape(p(i, :), [], 1));
fitness(i) = 1 / loss;
end
% 初始化全局最优解和个体最优解
[gbest_fitness, gbest_idx] = max(fitness);
gbest = p(gbest_idx, :);
pbest = p;
pbest_fitness = fitness;
% 迭代优化
for iter = 1:max_iter
% 更新速度和位置
for i = 1:pop_size
r1 = rand(1, length(p(i, :)));
r2 = rand(1, length(p(i, :)));
v(i, :) = v(i, :) + r1 .* (pbest(i, :) - p(i, :)) + r2 .* (gbest - p(i, :));
p(i, :) = p(i, :) + v(i, :);
end
% 限制权重和偏置的范围
p(p > 5) = 5;
p(p < -5) = -5;
% 计算适应度
for i = 1:pop_size
[loss, ~] = bp_forward(X_train, y_train, reshape(p(i, :), [], 1));
fitness(i) = 1 / loss;
end
% 更新个体最优解和全局最优解
for i = 1:pop_size
if fitness(i) > pbest_fitness(i)
pbest(i, :) = p(i, :);
pbest_fitness(i) = fitness(i);
end
end
[max_fitness, max_idx] = max(fitness);
if max_fitness > gbest_fitness
gbest_fitness = max_fitness;
gbest = p(max_idx, :);
end
% 打印当前迭代结果
fprintf('Iteration %d, Best fitness: %f\n', iter, gbest_fitness);
end
% 测试模型
[loss, y_pred] = bp_forward(X_test, y_test, reshape(gbest, [], 1));
accuracy = sum(y_pred == y_test) / length(y_test);
fprintf('Test accuracy: %f\n', accuracy);
```
其中,`bp_forward`函数是进行前向传播的函数,它的输入参数分别是训练数据X,标签数据y和网络权重w,输出参数分别是损失loss和预测结果y_pred。在粒子群优化中,我们需要将网络权重和偏置打包成一个向量,作为粒子群的一个粒子。
需要注意的是,粒子群优化是一种随机优化算法,每次迭代的结果可能会有所不同。因此,我们需要多次运行代码来得到更可靠的结果。
阅读全文