用python写一段两幅图像拼接的代码
时间: 2023-12-17 11:52:42 浏览: 131
以下是用 Python 编写的两幅图像拼接代码,可以将两张图像上下叠加在一起:
```python
import cv2
# 读取图片,假设两张图片大小相同
img1 = cv2.imread("image1.jpg")
img2 = cv2.imread("image2.jpg")
# 将两张图片垂直叠加
result = cv2.vconcat([img1, img2])
# 显示结果图片
cv2.imshow("Result", result)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
这段代码会读取名为 `image1.jpg` 和 `image2.jpg` 的两张图片,并将它们垂直叠加在一起。最后,代码将显示拼接后的图片,并等待用户按下任意按键才会关闭窗口。
相关问题
opencv Python 立体图像拼接代码
以下是一个简单的立体图像拼接代码示例,使用Python和OpenCV库实现:
```python
import cv2
import numpy as np
# 读取左右图像
img_left = cv2.imread('left.jpg')
img_right = cv2.imread('right.jpg')
# 转换为灰度图像
gray_left = cv2.cvtColor(img_left, cv2.COLOR_BGR2GRAY)
gray_right = cv2.cvtColor(img_right, cv2.COLOR_BGR2GRAY)
# 初始化SIFT检测器
sift = cv2.xfeatures2d.SIFT_create()
# 使用SIFT检测关键点和描述符
kp_left, des_left = sift.detectAndCompute(gray_left, None)
kp_right, des_right = sift.detectAndCompute(gray_right, None)
# 使用FLANN匹配器进行关键点匹配
flann = cv2.FlannBasedMatcher()
matches = flann.knnMatch(des_left, des_right, k=2)
# 根据Lowe's ratio test进行筛选
good_matches = []
for m, n in matches:
if m.distance < 0.7 * n.distance:
good_matches.append(m)
# 从匹配的关键点中提取左右图像的对应点
pts_left = np.float32([kp_left[m.queryIdx].pt for m in good_matches])
pts_right = np.float32([kp_right[m.trainIdx].pt for m in good_matches])
# 计算基础矩阵
F, mask = cv2.findFundamentalMat(pts_left, pts_right, cv2.FM_RANSAC)
# 从基础矩阵中提取左右图像的对应点
pts_left = pts_left[mask.ravel() == 1]
pts_right = pts_right[mask.ravel() == 1]
# 根据对应点计算左右图像的单应性矩阵
H_left, _ = cv2.findHomography(pts_left, pts_right, cv2.RANSAC, 5.0)
H_right, _ = cv2.findHomography(pts_right, pts_left, cv2.RANSAC, 5.0)
# 将左右图像进行单应性变换
img_left_warped = cv2.warpPerspective(img_left, H_left, (img_left.shape[1], img_left.shape[0]))
img_right_warped = cv2.warpPerspective(img_right, H_right, (img_right.shape[1], img_right.shape[0]))
# 将两幅图像拼接在一起
result = np.zeros((img_left.shape[0], img_left.shape[1]*2, img_left.shape[2]), dtype=np.uint8)
result[:, :img_left.shape[1], :] = img_left_warped
result[:, img_left.shape[1]:, :] = img_right_warped
# 显示拼接结果
cv2.imshow('Result', result)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
这段代码首先读取左右图像,然后将它们转换为灰度图像,并使用SIFT检测器检测关键点和描述符。然后使用FLANN匹配器进行关键点匹配,并根据Lowe's ratio test进行筛选,提取出左右图像的对应点。
接下来,使用OpenCV的`findFundamentalMat`函数计算基础矩阵,并从基础矩阵中提取左右图像的对应点。然后使用`findHomography`函数分别计算左右图像的单应性矩阵,并将它们应用到左右图像上,使它们对齐。
最后,将左右图像拼接在一起,并显示拼接结果。
python图像拼接最佳接缝代码
以下是一段Python图像拼接的最佳接缝代码:
```python
import cv2
import numpy as np
# Load the images to be stitched
image1 = cv2.imread('image1.jpg')
image2 = cv2.imread('image2.jpg')
# Find the keypoints and descriptors with SIFT
sift = cv2.xfeatures2d.SIFT_create()
keypoints1, descriptors1 = sift.detectAndCompute(image1, None)
keypoints2, descriptors2 = sift.detectAndCompute(image2, None)
# Match the keypoints with Brute Force Matcher
bf = cv2.BFMatcher()
matches = bf.knnMatch(descriptors1, descriptors2, k=2)
# Apply ratio test to select good matches
good_matches = []
for m, n in matches:
if m.distance < 0.75 * n.distance:
good_matches.append(m)
# Arrange the good matches in the order of their distance
good_matches = sorted(good_matches, key=lambda x: x.distance)
# Find the homography matrix using RANSAC
src_pts = np.float32([ keypoints1[m.queryIdx].pt for m in good_matches ]).reshape(-1, 1, 2)
dst_pts = np.float32([ keypoints2[m.trainIdx].pt for m in good_matches ]).reshape(-1, 1, 2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
# Warp the second image onto the first image using the homography matrix
image3 = cv2.warpPerspective(image2, M, (image1.shape[1] + image2.shape[1], image1.shape[0]))
# Combine the two images by blending them with a gradient mask
mask = np.zeros((image1.shape[0], image1.shape[1], 3), dtype=np.uint8)
mask[:,:int(image1.shape[1]/2),:] = 255
image4 = cv2.bitwise_and(image3, mask)
image5 = cv2.bitwise_and(image1, cv2.bitwise_not(mask))
result = cv2.add(image4, image5)
# Display the final stitched image
cv2.imshow("Stitched Image", result)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
这段代码使用了SIFT算法检测关键点并计算特征描述子,使用Brute Force Matcher进行关键点匹配并进行比例测试以选择好的匹配点。之后使用RANSAC算法估算得到单应性矩阵,并使用该矩阵对第二幅图像进行透视变换,使其对准第一幅图像。最后使用渐变蒙版将两幅图像混合在一起。
阅读全文