elif count == 7: x_train_one = np.reshape(x_train[:, :, 0], [len(x_train), cold, 1]) x_train_two = np.reshape(x_train[:, :, 1], [len(x_train), cold, 1]) x_train_three = np.reshape(x_train[:, :, 2], [len(x_train), cold, 1]) x_train_four = np.reshape(x_train[:, :, 3], [len(x_train), cold, 1]) x_train_five = np.reshape(x_train[:, :, 4], [len(x_train), cold, 1]) x_train_six = np.reshape(x_train[:, :, 5], [len(x_train), cold, 1]) x_train_seven = np.reshape(x_train[:, :, 6], [len(x_train), cold, 1]) x_test_one = np.reshape(x_test[:, :, 0], [len(x_test), cold, 1]) x_test_two = np.reshape(x_test[:, :, 1], [len(x_test), cold, 1]) x_test_three = np.reshape(x_test[:, :, 2], [len(x_test), cold, 1]) x_test_four = np.reshape(x_test[:, :, 3], [len(x_test), cold, 1]) x_test_five = np.reshape(x_test[:, :, 4], [len(x_test), cold, 1]) x_test_six = np.reshape(x_test[:, :, 5], [len(x_test), cold, 1]) x_test_seven = np.reshape(x_test[:, :, 6], [len(x_test), cold, 1]) input_out = [x_train_one, x_train_two, x_train_three, x_train_four, x_train_five, x_train_six, x_train_seven] layer_out = [x_test_one, x_test_two, x_test_three, x_test_four, x_test_five, x_test_six, x_test_seven] return input_out, layer_out
时间: 2023-10-25 13:09:03 浏览: 110
这段代码是用于将输入数据进行预处理的部分。根据`count`的值,它根据输入数据的维度进行了相应的重塑操作。
首先,对于训练集数据`x_train`,它将第一维度的数据(即[:, :, 0])进行重塑,使得每个样本的维度变为[cold, 1],然后分别赋值给`x_train_one`、`x_train_two`、`x_train_three`等变量。同样的操作也对测试集数据`x_test`进行了处理。
最后,它将处理后的数据存放在`input_out`和`layer_out`列表中,并通过`return`语句将它们作为函数的输出返回。
这段代码的目的是将多维的输入数据转换为适合模型输入的格式,可能是为了满足某个模型或算法的输入要求。具体的处理逻辑可能需要结合代码的上下文来进行更准确的理解。
相关问题
解释一下 def train_label_load(self,label_list,choice): if choice=='init': self.train_label=label_list elif choice=='append': if ~len(self.train_label): self.train_label=label_list else: self.train_label=self.train_label+label_list
这个函数是用来加载训练数据的标签集合。参数label_list是一个包含标签的列表,而choice参数则用来指定是初始化标签还是将新的标签添加到已有的标签集合中。如果choice的值是'init',则直接使用label_list初始化标签集合;如果choice的值是'append',则将label_list添加到已有标签集合的后面。
import argparse import numpy as np import pandas as pd from sklearn import model_selection from sklearn import preprocessing from sklearn import linear_model from sklearn import metrics import joblib from config import * def train(x_train, x_test, y_train, y_test): estimator = linear_model.Ridge() estimator.fit(x_train, y_train) print('梯度下降的权重系数是:', estimator.coef_) print('梯度下降的偏置是:', estimator.intercept_) joblib.dump(estimator, model_save_path) y_predict = estimator.predict(x_test) err = metrics.mean_squared_error(y_test, y_predict) print('梯度下降的误差率为:', err) def pred(x): estimator = joblib.load(model_save_path) x= np.array(x) predict = estimator.predict(x.reshape((x.shape[0], 1))) return predict def main(): parser = argparse.ArgumentParser(description='Demo of argparse') parser.add_argument('--method', type=str, default='train') args = parser.parse_args() method = args.method if method == 'train': df = pd.read_excel(file_name, dtype={ '年份': int, '值': float }) x = df['年份'].to_numpy() x = x.reshape((x.shape[0], 1)) y = df['值'].to_numpy() x_train, x_test, y_train, y_test=model_selection.train_test_split(x, y) train(x_train, x_test, y_train, y_test) elif method == 'test': predict = pred(pred_year).round(2) df = pd.DataFrame({ '预测年份': pred_year, '预测结果(单位:万吨)': predict }) print(df) df.to_excel(save_pred_path, index=False) else: print('wrong') if __name__ == '__main__': main()
这段 Python 代码主要实现了一个基于 Ridge 回归模型的数据训练和预测程序。具体来说,代码分为以下几个部分:
1. 导入需要的库和模块,包括 argparse、numpy、pandas、scikit-learn 和 joblib。
2. 实现一个 train 函数,用于训练 Ridge 模型。该函数接收训练集和测试集的特征和标签数据,通过 scikit-learn 库中的 Ridge 类进行模型训练,输出模型的权重系数、偏置和误差率,并将训练好的模型保存到指定路径。
3. 实现一个 pred 函数,用于对给定的年份进行预测。该函数接收一个年份数组,从指定路径加载已经训练好的 Ridge 模型,对年份数组进行预测,并返回预测结果。
4. 实现一个 main 函数,用于控制整个程序的流程。该函数通过 argparse 模块解析命令行参数,从而决定程序要进行的操作类型。如果是训练操作,就从指定路径的 Excel 文件中读取数据,将年份和对应的值作为特征和标签,通过 train 函数进行训练。如果是预测操作,就调用 pred 函数进行预测,并将预测结果保存到指定路径的 Excel 文件中。如果命令行参数有误,则输出错误信息。
5. 在最后,通过 if __name__ == '__main__': 判断当前文件是否被作为模块导入,如果是,则不执行 main 函数,如果直接运行该文件,则执行 main 函数。
总的来说,这个程序使用 Ridge 回归模型对年份和对应的值进行训练,并且可以对未来的年份进行预测。
阅读全文