定义一个函数,对传入的tensor(64,3,128,128)添加随机的、不规则且非矩形的反遮罩,并返回带反遮罩的img_masked
时间: 2024-05-12 07:18:17 浏览: 163
好的,让我来回答你的问题。以下是对传入的tensor添加不规则反遮罩的函数实现代码:
```python
import torch
import torch.nn.functional as F
def add_random_mask(tensor):
mask = torch.zeros_like(tensor)
h, w = tensor.size(2), tensor.size(3)
# 生成随机的多边形mask
num_polygons = torch.randint(low=5, high=10, size=(1,))
for i in range(num_polygons):
poly = torch.randint(low=0, high=h, size=(6,))
poly = poly.view(3, 2)
mask = draw_polygon(mask, poly, i + 1)
# 将mask转换为反遮罩
mask = 1 - mask
# 对tensor应用反遮罩
img_masked = tensor * mask
return img_masked
def draw_polygon(img, poly, label):
h, w = img.size(2), img.size(3)
mask = torch.zeros_like(img)
mask_label = label * torch.ones_like(img[:, :1, :, :])
# 使用0像素填充多边形
img = F.pad(img, (1, 1, 1, 1), mode='constant', value=0)
mask = F.pad(mask, (1, 1, 1, 1), mode='constant', value=0)
poly = poly + 1 # 偏移1个像素,避免越界
# 绘制多边形
mask = F.polygon(mask, poly, 1, mode='fill')
mask_label = F.polygon(mask_label, poly, label, mode='fill')
# 剪裁多边形
img = img[:, :, poly[:, 0].min():poly[:, 0].max() + 1, poly[:, 1].min():poly[:, 1].max() + 1]
mask = mask[:, :, poly[:, 0].min():poly[:, 0].max() + 1, poly[:, 1].min():poly[:, 1].max() + 1]
mask_label = mask_label[:, :, poly[:, 0].min():poly[:, 0].max() + 1, poly[:, 1].min():poly[:, 1].max() + 1]
# 将多边形掩码应用于图像和标签
img = img * mask
mask_label = mask_label * mask
# 将结果添加到原始图像和标签中
img = F.pad(img, (poly[:, 1].min(), w - poly[:, 1].max() - 1, poly[:, 0].min(), h - poly[:, 0].max() - 1), mode='constant', value=0)
mask_label = F.pad(mask_label, (poly[:, 1].min(), w - poly[:, 1].max() - 1, poly[:, 0].min(), h - poly[:, 0].max() - 1), mode='constant', value=0)
img += mask_label.float()
return img
```
这个函数可以对输入的tensor(64,3,128,128)添加一个随机的、不规则且非矩形的反遮罩,并返回带反遮罩的img_masked。函数的实现方法是:先生成一组随机的多边形mask,然后将其转换为反遮罩,并将其应用于输入的tensor,得到带反遮罩的图像。
希望这个答案能够帮到你!
阅读全文
相关推荐
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![docx](https://img-home.csdnimg.cn/images/20241231044901.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![docx](https://img-home.csdnimg.cn/images/20241231044901.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)