coco数据集标准格式转voc格式
时间: 2023-09-25 13:08:58 浏览: 96
自己的数据集转COCO数据集格式
将 COCO 格式转换为 VOC 格式可以使用以下步骤:
1. 安装 Python COCO API
```
pip install pycocotools
```
2. 创建 voc 格式目标文件夹
```
mkdir VOCdevkit/VOC2007
mkdir VOCdevkit/VOC2007/Annotations
mkdir VOCdevkit/VOC2007/ImageSets
mkdir VOCdevkit/VOC2007/JPEGImages
```
3. 将 COCO 图片复制到 JPEGImages 文件夹中
```
cp path/to/coco/images/* VOCdevkit/VOC2007/JPEGImages/
```
4. 使用以下代码将 COCO 标注文件转换为 VOC 格式的 XML 文件
```python
import json
import xml.etree.ElementTree as ET
import os
# COCO 类别名称到 VOC 类别名称的映射
coco_to_voc = {
"person": "person",
"bicycle": "bicycle",
"car": "car",
"motorcycle": "motorbike",
"airplane": "aeroplane",
"bus": "bus",
"train": "train",
"truck": "truck",
"boat": "boat",
"traffic light": "traffic_light",
"fire hydrant": "fire_hydrant",
"stop sign": "stop_sign",
"parking meter": "parking_meter",
"bench": "bench",
"bird": "bird",
"cat": "cat",
"dog": "dog",
"horse": "horse",
"sheep": "sheep",
"cow": "cow",
"elephant": "elephant",
"bear": "bear",
"zebra": "zebra",
"giraffe": "giraffe",
"backpack": "backpack",
"umbrella": "umbrella",
"handbag": "handbag",
"tie": "tie",
"suitcase": "suitcase",
"frisbee": "frisbee",
"skis": "skis",
"snowboard": "snowboard",
"sports ball": "sports_ball",
"kite": "kite",
"baseball bat": "baseball_bat",
"baseball glove": "baseball_glove",
"skateboard": "skateboard",
"surfboard": "surfboard",
"tennis racket": "tennis_racket",
"bottle": "bottle",
"wine glass": "wine_glass",
"cup": "cup",
"fork": "fork",
"knife": "knife",
"spoon": "spoon",
"bowl": "bowl",
"banana": "banana",
"apple": "apple",
"sandwich": "sandwich",
"orange": "orange",
"broccoli": "broccoli",
"carrot": "carrot",
"hot dog": "hot_dog",
"pizza": "pizza",
"donut": "donut",
"cake": "cake",
"chair": "chair",
"couch": "sofa",
"potted plant": "potted_plant",
"bed": "bed",
"dining table": "dining_table",
"toilet": "toilet",
"tv": "tv_monitor",
"laptop": "laptop",
"mouse": "mouse",
"remote": "remote",
"keyboard": "keyboard",
"cell phone": "cell_phone",
"microwave": "microwave",
"oven": "oven",
"toaster": "toaster",
"sink": "sink",
"refrigerator": "fridge",
"book": "book",
"clock": "clock",
"vase": "vase",
"scissors": "scissors",
"teddy bear": "teddy_bear",
"hair drier": "hair_drier",
"toothbrush": "toothbrush"
}
# COCO 标注文件路径
ann_file = 'path/to/coco/annotations.json'
# VOC 目标文件夹路径
voc_dir = 'VOCdevkit/VOC2007/'
# 加载 COCO 标注文件
with open(ann_file, 'r') as f:
coco_data = json.load(f)
# 对每个图像处理
for img_data in coco_data['images']:
# 创建 VOC XML 文件
xml_file = ET.Element('annotation')
ET.SubElement(xml_file, 'folder').text = 'VOC2007'
ET.SubElement(xml_file, 'filename').text = img_data['file_name']
source = ET.SubElement(xml_file, 'source')
ET.SubElement(source, 'database').text = 'COCO 2017'
ET.SubElement(source, 'annotation').text = 'COCO 2017'
ET.SubElement(source, 'image').text = 'Flickr'
size = ET.SubElement(xml_file, 'size')
ET.SubElement(size, 'width').text = str(img_data['width'])
ET.SubElement(size, 'height').text = str(img_data['height'])
ET.SubElement(size, 'depth').text = '3'
ET.SubElement(xml_file, 'segmented').text = '0'
# 查找该图像的所有标注框
bbox_list = []
for ann_data in coco_data['annotations']:
if ann_data['image_id'] == img_data['id']:
bbox = ann_data['bbox']
bbox_list.append(bbox)
# 对每个标注框处理
for bbox in bbox_list:
# 转换 COCO 格式到 VOC 格式
x_min = bbox[0]
y_min = bbox[1]
x_max = bbox[0] + bbox[2]
y_max = bbox[1] + bbox[3]
class_name = coco_to_voc[coco_data['categories'][ann_data['category_id']-1]['name']]
# 创建 VOC XML 标注
obj = ET.SubElement(xml_file, 'object')
ET.SubElement(obj, 'name').text = class_name
ET.SubElement(obj, 'pose').text = 'Unspecified'
ET.SubElement(obj, 'truncated').text = '0'
ET.SubElement(obj, 'difficult').text = '0'
bndbox = ET.SubElement(obj, 'bndbox')
ET.SubElement(bndbox, 'xmin').text = str(int(x_min))
ET.SubElement(bndbox, 'ymin').text = str(int(y_min))
ET.SubElement(bndbox, 'xmax').text = str(int(x_max))
ET.SubElement(bndbox, 'ymax').text = str(int(y_max))
# 将 XML 文件保存到 VOC 目标文件夹中
xml_str = ET.tostring(xml_file)
with open(os.path.join(voc_dir, 'Annotations', img_data['file_name'].replace('.jpg', '.xml')), 'wb') as f:
f.write(xml_str)
```
5. 创建 VOC 格式的图像列表文件
```python
import os
# VOC 目标文件夹路径
voc_dir = 'VOCdevkit/VOC2007/'
# 获取所有 VOC 图像文件名
img_files = os.listdir(os.path.join(voc_dir, 'JPEGImages'))
# 创建 VOC 图像列表文件
with open(os.path.join(voc_dir, 'ImageSets', 'Main', 'trainval.txt'), 'w') as f:
for img_file in img_files:
img_name = img_file.replace('.jpg', '')
f.write(img_name + '\n')
```
完成以上步骤,您就可以将 COCO 数据集转换为 VOC 格式了。
阅读全文