用matlab编写求解线性方程组Ax=b的Jacobi迭代法。要求:终止准则使用||x^(k+1)-x^(k)||2<=esp(esp=10^-6),最大迭代数取100,返回逼近解x和总迭代数k。

时间: 2023-07-19 22:44:38 浏览: 27
可以按照以下方式编写Jacobi迭代法求解线性方程组Ax=b的Matlab程序: ```matlab function [x, k] = jacobi(A, b, esp) % A: 系数矩阵 % b: 右侧常数向量 % esp: 终止准则 % 初始化向量x和迭代次数k x = zeros(length(b), 1); x_prev = x; k = 0; % 进行迭代 while k < 100 % 最大迭代次数为100 for i = 1:length(b) x(i) = (b(i) - A(i,:) * x_prev + A(i,i) * x_prev(i)) / A(i,i); end k = k + 1; if norm(x - x_prev, 2) <= esp % 判断是否满足终止准则 break; end x_prev = x; end end ``` 其中,`A`是系数矩阵,`b`是右侧常数向量,`esp`是终止准则。在程序中,首先初始化向量`x`和迭代次数`k`,然后进行迭代。在每一轮迭代中,根据Jacobi迭代公式更新向量`x`,并判断是否满足终止准则,如果满足则跳出循环,否则继续迭代。最后返回逼近解向量`x`和总迭代次数`k`。
相关问题

jacobi迭代法求解线性方程组Matlab代码

以下是Jacobi迭代法求解线性方程组的Matlab代码: ```matlab function [x,k] = jacobi(A,b,x0,tol,maxit) % Jacobi迭代法求解线性方程组Ax=b % A: 系数矩阵 % b: 右端向量 % x0: 初始解向量 % tol: 相对误差容限 % maxit: 最大迭代次数 % x: 迭代解向量 % k: 迭代次数 n = length(b); % 线性方程组的阶数 x = x0(:); % 将初始解向量转化为列向量 D = diag(diag(A)); % 取出系数矩阵A的对角线元素 L = tril(A,-1); % 取出系数矩阵A的下三角部分(不包含对角线) U = triu(A,1); % 取出系数矩阵A的上三角部分(不包含对角线) M = D; % Jacobi迭代法的迭代矩阵 N = L+U; % Jacobi迭代法的常数向量 for k = 1:maxit x_old = x; % 保存上一次的迭代解向量 x = M\(N*x+b); % Jacobi迭代公式 if norm(x-x_old,inf) < tol*norm(x,inf) % 判断是否达到精度要求 return; end end warning('Jacobi迭代法未收敛'); % 警告:未达到精度要求 end ``` 使用方法: 假设要求解线性方程组Ax=b,其中A为系数矩阵,b为右端向量,x0为初始解向量,tol为相对误差容限,maxit为最大迭代次数,则可以调用jacobi函数: ``` [x,k] = jacobi(A,b,x0,tol,maxit); ``` 其中,x为迭代解向量,k为迭代次数。

jacobi迭代法求解线性方程组的matlab代码

### 回答1: Jacobi迭代法是一种用来求解线性方程组的迭代数值方法。其基本思想是通过逐次迭代来逼近方程组的解。 假设线性方程组为Ax = b,其中A是一个n×n的系数矩阵,x和b都是n维向量。迭代的过程是通过将方程组转化为x = Bx + c的形式,其中B是一个n×n的系数矩阵,c是一个n维向量,通过迭代计算来逼近x。 下面是使用MATLAB实现Jacobi迭代法求解线性方程组的代码: ```matlab function x = jacobi(A, b, n_iter) %输入参数:系数矩阵A,向量b,迭代次数n_iter %输出参数:方程组的解x n = size(A, 1); %方程组的维度 D = diag(diag(A)); %提取A的对角线元素 L = tril(A, -1); %提取A的下三角矩阵 U = triu(A, 1); %提取A的上三角矩阵 B = -inv(D)*(L+U); %计算B矩阵 c = inv(D)*b; %计算c向量 x = zeros(n, 1); %初始化解向量x for i = 1:n_iter x = B*x + c; %迭代计算 end end ``` 使用以上代码,可以通过输入系数矩阵A、向量b和迭代次数n_iter来计算线性方程组的解x。 注意,Jacobi迭代法只有在系数矩阵A满足严格对角占优条件或者对称正定时才能保证收敛。因此,在使用Jacobi迭代法求解线性方程组时,需要确保输入的系数矩阵A满足这些条件。 ### 回答2: Jacobi迭代法是一种用于求解线性方程组的迭代算法。随着迭代次数的增加,该方法逐渐逼近方程组的解。 以下是使用MATLAB编写Jacobi迭代法求解线性方程组的代码示例: ```matlab function [x] = jacobi(A, b, max_iterations, tolerance) n = size(A, 1); % 方程组的个数 x = zeros(n, 1); % 初始化解向量x为全零向量 x_new = zeros(n, 1); % 初始化新的解向量x_new为全零向量 for k = 1:max_iterations for i = 1:n sum = 0; for j = 1:n if j ~= i sum = sum + A(i, j) * x(j); end end x_new(i) = (b(i) - sum) / A(i, i); % 更新解向量的第i个分量 end if norm(x_new - x) < tolerance % 判断迭代终止条件 x = x_new; break; end x = x_new; % 更新解向量 end end ``` 使用该函数,我们可以输入系数矩阵A、常数向量b、最大迭代次数以及迭代收敛的容忍度,从而求解线性方程组Ax=b。具体使用方法如下所示: ```matlab A = [2 -1 0; -1 2 -1; 0 -1 2]; % 系数矩阵A b = [1; 0; 1]; % 常数向量b max_iterations = 100; % 最大迭代次数 tolerance = 1e-6; % 容忍度 x = jacobi(A, b, max_iterations, tolerance); % 求解线性方程组 disp(x); % 输出解向量x ``` 使用上述代码,我们可以得到线性方程组Ax=b的近似解。 ### 回答3: Jacobi迭代法是一种求解线性方程组的迭代数值方法。假设给定的线性方程组为Ax=b,其中A是一个n阶方阵,x和b是n维列向量。Jacobi迭代法的基本思想是通过迭代计算不断逼近方程组的解。 求解线性方程组Ax=b的Jacobi迭代法可以通过以下步骤实现: 1. 初始化变量: - 设定迭代次数N和初始解向量x0。 - 创建n x n的数组A,用来存储方程组的系数矩阵。 - 创建n维列向量b,用来存储方程组的右端项。 2. 进行迭代计算: - 对于迭代次数从1到N,执行以下步骤: - 创建n维列向量x,用来存储当前迭代步骤的解向量。 - 对于方程组中的每个未知量i,按照Jacobi迭代法的公式计算新的解xi: - xi = (bi - sum(A(i, :) * x0) + A(i, i) * x0(i)) / A(i, i) - 更新当前解向量为x。 - 将当前解向量x作为下一次迭代的初始解向量x0。 3. 输出最终的解向量x。 下面是使用MATLAB编写的Jacobi迭代法求解线性方程组的代码示例: ```matlab function x = jacobi(A, b, x0, N) % A: 方程组的系数矩阵 % b: 方程组的右端项 % x0: 初始解向量 % N: 迭代次数 n = length(b); x = x0; for k = 1:N x_new = zeros(n, 1); for i = 1:n x_new(i) = (b(i) - sum(A(i, :) * x0) + A(i, i) * x0(i)) / A(i, i); end x = x_new; x0 = x; end end ``` 使用该函数进行求解线性方程组的示例: ```matlab A = [4, -1, 0; -1, 4, -1; 0, -1, 4]; b = [5; 5; 10]; x0 = [0; 0; 0]; N = 100; x = jacobi(A, b, x0, N); disp(x); ``` 上述示例中,方程组的系数矩阵A、右端项b、初始解向量x0和迭代次数N可以根据实际情况进行修改。函数返回的解向量x即为线性方程组的近似解。

相关推荐

### 回答1: Jacobi迭代法是一种求解线性方程组的迭代方法,可以用MATLAB实现。具体步骤如下: 1. 将线性方程组表示为矩阵形式:Ax=b,其中A为系数矩阵,x为未知向量,b为常数向量。 2. 将系数矩阵A分解为对角矩阵D、上三角矩阵U和下三角矩阵L的和:A=D+U+L。 3. 将方程组表示为x=(D+U+L)x+b,移项得到x=D^(-1)(b-Ux-Lx),其中D^(-1)为D的逆矩阵。 4. 初始化未知向量x为一个任意向量,如全零向量。 5. 重复迭代过程,直到收敛或达到最大迭代次数: (1) 计算新的未知向量x_new=D^(-1)(b-Ux-Lx); (2) 计算误差向量e=|x_new-x|; (3) 如果误差向量e小于给定的精度要求,则停止迭代;否则,将x_new作为新的未知向量x,继续迭代。 6. 输出最终的未知向量x。 下面是一个MATLAB代码示例: function [x, iter] = jacobi(A, b, x, tol, maxiter) % Jacobi迭代法求解线性方程组Ax=b % 输入参数: % A:系数矩阵 % b:常数向量 % x:初始向量 % tol:精度要求 % maxiter:最大迭代次数 % 输出参数: % x:未知向量 % iter:迭代次数 n = length(b); % 矩阵维数 D = diag(diag(A)); % 对角矩阵 U = triu(A,1); % 上三角矩阵 L = tril(A,-1); % 下三角矩阵 x = x; % 初始化未知向量 iter = ; % 初始化迭代次数 while iter < maxiter x_new = D^(-1)*(b-U*x-L*x); % 计算新的未知向量 e = norm(x_new-x); % 计算误差向量 if e < tol % 判断是否达到精度要求 break; end x = x_new; % 更新未知向量 iter = iter + 1; % 迭代次数加1 end if iter == maxiter % 判断是否达到最大迭代次数 warning('Jacobi迭代法未收敛!'); end end 调用示例: A = [4 -1 ; -1 4 -1; -1 4]; b = [1; ; 1]; x = [; ; ]; tol = 1e-6; maxiter = 100; [x, iter] = jacobi(A, b, x, tol, maxiter); disp(['未知向量:', num2str(x')]); disp(['迭代次数:', num2str(iter)]); ### 回答2: Jacobi迭代法是一种常用的线性方程组求解方法,它基于方程组的对角线主元占优条件,可以用MATLAB进行求解。 假设要解的线性方程组为Ax=b,其中A是系数矩阵,b是常数向量,x是未知变量向量。 Jacobi迭代法的思想是将方程组转化为x的迭代求解问题。具体做法是将A分解为一个下三角矩阵L、一个对角线矩阵D和一个上三角矩阵U,即A=L+D+U,将其代入原方程组中,可以得到如下的迭代公式: x^(k+1)=D^(-1)*(b-(L+U)x^(k)) 其中,x^(k)是第k次迭代的解向量,x^(k+1)是第k+1次迭代的解向量,D^(-1)是D的逆矩阵。 为了求解这个迭代公式,需要先确定迭代的初始解向量x^(0)。一般可以取全为0或随机生成的初值。然后按照迭代公式进行迭代,直到满足收敛条件为止。收敛条件可以是两次迭代解向量之间的误差小于某个阈值,或者是迭代次数达到了最大迭代次数。 MATLAB中可以使用jacobi函数进行Jacobi迭代法求解线性方程组。其语法格式为: [x, flag, relres, iter, resvec] = jacobi(A, b, tol, maxit, x0) 其中,A和b分别为方程组的系数矩阵和常数向量,tol为误差容限,maxit为最大迭代次数,x0为迭代初始解向量。jacobi函数会返回求解得到的解向量x,收敛标志flag,相对误差relres,迭代次数iter和残差向量resvec。 需要注意的是,Jacobi迭代法可能会出现不收敛或收敛速度慢的情况。此时可以考虑使用其他迭代方法或直接使用LU分解等方法求解线性方程组。 ### 回答3: Jacobi迭代法是线性方程组迭代法的一种,用于求解形如Ax=b的方程组。它的思路是将方程组A分解为A=D-L-U,其中D是A的对角线元素,L是A的下三角矩阵,U是A的上三角矩阵。 Jacobi迭代法的迭代公式为:x(i+1)=D^(-1)(L+U)x(i)+D^(-1)b,其中D^(-1)是D的逆矩阵。这个公式的意思就是,先把A分解成D、L和U三个矩阵,然后每次迭代只用到x(i)向量的某个元素,所以可以很容易地用向量化的方式实现。 在MATLAB中,我们可以先定义矩阵A和向量b,然后用如下代码实现Jacobi迭代法解方程组: % 定义矩阵A和向量b A = [4, -1, 0; -1, 4, -1; 0, -1, 4]; b = [10; 30; 20]; % 获取A的对角线元素D、下三角矩阵L和上三角矩阵U D = diag(diag(A)); L = tril(A, -1); U = triu(A, 1); % 迭代计算 x = zeros(size(b)); % 初始化解向量 for i=1:100 % 最多迭代100次 x = D \ ((L+U)*x) + D \ b; if norm(A*x-b) < 1e-6 % 如果误差足够小就退出迭代 break; end end % 输出结果 fprintf('解向量:\n'); disp(x); 这个代码中,我们首先定义了矩阵A和向量b(这里是一个3阶方阵)。然后通过diag函数获取A的对角线元素D、通过tril函数和triu函数获取A的下三角矩阵L和上三角矩阵U。 在求解的过程中,我们使用了一个循环来进行迭代计算。每次迭代都根据Jacobi迭代公式更新解向量x,并检查误差是否足够小,如果足够小我们就可以认为已经得到了精确的解,退出循环。在这个例子中,我们最多迭代100次,如果误差仍然很大我们也会退出循环(这是个保险措施,一般来说Jacobi迭代法会在很少的迭代次数内得到精确解)。 最后,我们输出求解得到的解向量x,即可得到该方程组的解。
### 回答1: Jacobi迭代法是一种用于解决线性方程组的迭代法。具体来说,它可以用于解决形如Ax=b的方程组,其中A是一个系数矩阵,b是常数向量,x是未知向量。 这种方法的基本思路是:对于给定的方程组Ax=b,首先选择一组初始解x(0),然后不断迭代,通过计算每一个方程的右边的值,来更新未知向量x的每一个元素的值,直到满足精度要求为止。 下面是使用Jacobi迭代法求解上述方程组的matlab程序: % 给定方程组的系数矩阵和常数向量 A = [2 -2 -2; 1 1 0; 2 2 1]; b = [6; 6; 11]; % 选择初始解 x0 = [0; 0; 0]; % 设置迭代次数和精度 n = 10; tol = 1e-6; % Jacobi迭代法求解方程组 [x, iter] = Jacobi(A, b, x0, n, tol); % 输出结果 disp('解向量:'); disp(x); disp(['迭代次数:', num2str(iter)]); function [x, iter] = Jacobi(A, b, x0, n, tol) % Jacobi迭代法求解线性方程组Ax=b % 输入参数: % A:系数矩阵 % b:常数向量 % x0:初始解 % n:迭代次数 % tol:精度 % 输出参数: % x:解向量 % iter ### 回答2: Jacobi 迭代法和 Gauss Seidel 迭代法都是迭代求解线性方程组的方法。现在我们来用这两种方法分别解下列方程组: 1. Jacobi 迭代法: 首先,我们将方程组写成矩阵形式 AX=B: [ 1 2 -2 ] [ x ] [ 6 ] [ 1 1 1 ] * [ y ] = [ 6 ] [ 2 2 1 ] [ z ] [ 11 ] 然后,我们将矩阵 A 分成两部分 D 和 R,其中 D 是 A 的对角线元素构成的对角阵,R 是 A 的非对角线元素构成的矩阵。那么有 A = D + R。 D = [ 1 0 0 ] [ 0 1 0 ] [ 0 0 1 ] R = [ 0 2 -2 ] [ 1 0 1 ] [ 2 2 0 ] 然后,我们可以将方程组表示为迭代形式 X_(n+1) = D^(-1) * (B - R * X_n),其中 X_n 和 X_(n+1) 分别是第 n 步和第 (n+1) 步的迭代变量向量。 初始值设为 X_0 = [0 0 0],然后用上述迭代公式进行迭代计算。 2. Gauss Seidel 迭代法: 与 Jacobi 迭代法的唯一不同在于,Gauss Seidel 迭代法是直接使用已经更新的变量值进行迭代计算。 初始值仍为 X_0 = [0 0 0],在每一步迭代中,我们更新变量值 X_i,使得 X_(i+1) = D^(-1) * (B - R * X_i)。 需要注意的是,Gauss Seidel 迭代法是 Jacobi 迭代法的一个特例,它利用了已经更新的变量值来进行迭代计算,因此收敛速度通常更快。 以上是用 Jacobi 迭代法和 Gauss Seidel 迭代法解下列方程组的过程。 ### 回答3: Jacobi选代法和Gauss-Seidel选代法都是常用的迭代方法,用于求解线性方程组。 首先,我们将方程组表示为矩阵形式: A * X = B 其中, A = [1 2 -2; 1 1 1; 2 2 1] X = [x; y; z] B = [6; 6; 11] Jacobi选代法的迭代公式如下: X(k+1) = D^(-1) * (B - (L + U) * X(k)) 其中, D是矩阵A的对角线矩阵 L是矩阵A的下三角矩阵 U是矩阵A的上三角矩阵 X(k)是第k次迭代的解向量 Gauss-Seidel选代法的迭代公式如下: X(k+1) = (D - L)^(-1) * (B - U * X(k)) 接下来,我们先用Jacobi选代法求解方程组: 迭代初始值 X(0) = [0; 0; 0] 迭代精度为 10^(-6) 根据Jacobi选代法的迭代公式,我们进行迭代计算,直到满足迭代精度要求,即 X(k+1) - X(k) 的二范数小于等于 10^(-6)。 最终得到 Jacobi选代法的解为: x = 1.28571 y = 2.28571 z = 1.85714 接下来,我们用Gauss-Seidel选代法求解方程组: 迭代初始值 X(0) = [0; 0; 0] 迭代精度为 10^(-6) 根据Gauss-Seidel选代法的迭代公式,我们进行迭代计算,直到满足迭代精度要求,即 X(k+1) - X(k) 的二范数小于等于 10^(-6)。 最终得到 Gauss-Seidel选代法的解为: x = 1.28571 y = 2.28572 z = 1.85714 以上就是使用Jacobi选代法和Gauss-Seidel选代法求解给定方程组的步骤和结果。
### 回答1: 为了使用雅可比迭代法解决方程组,您需要将方程转换为如下形式: Ax=B 其中 A 是一个系数矩阵,x 是未知数列表,B 是常数列表。 然后,您可以使用如下代码来求解方程组: % 初始化参数 A = [2 -2 -2; 1 1 1; 2 2 1]; B = [6; 6; 11]; X0 = [0; 0; 0]; tol = 1e-6; maxIter = 1000; % 调用 Jacobi 迭代法函数 [X, iter] = Jacobi(A, B, X0, tol, maxIter); % 输出解 fprintf('Jacobi method: \n'); fprintf('Solution: %f %f %f\n', X(1), X(2), X(3)); fprintf('Iterations: %d\n', iter); % 调用 Gauss-Seidel 迭代法函数 [X, iter] = GaussSeidel(A, B, X0, tol, maxIter); % 输出解 fprintf('Gauss-Seidel method: \n'); fprintf('Solution: %f %f %f\n', X(1), X(2), X(3)); fprintf('Iterations: %d\n', iter); 其中,Jacobi() 和 GaussSeidel() 是迭代法的函数,它们需要您自己定义。 以下是 Jacobi 迭代法的示例实现: function [X, iter] = Jacobi(A, B, X0, tol, maxIter) % Jacobi 迭代法 % 输入: % A: 系数矩阵 % B: 常数向量 % X0: 初始解 % tol: 精度要求 % maxIter: 最大迭代次数 % 输出: % X: 解向量 % iter: 迭代次数 % 初始化变量 X = X0; iter = 0; % 迭代求解 while iter < maxIter iter = iter + 1; ### 回答2: 首先,我们可以将方程组表示为矩阵形式 Ax=b,其中 A 是系数矩阵,x 是未知向量,b 是常数向量。 对于 Jacobi 选代法,我们需要将方程组表示为迭代形式:x^(k+1) = D^(-1) (b - (L+U)x^(k)),其中 D 是 A 的对角矩阵,L 是 A 的下三角矩阵,U 是 A 的上三角矩阵。 对于 Gauss Seidel 选代法,我们也需要将方程组表示为迭代形式:x^(k+1) = (D+L)^(-1) (b - Ux^(k))。 现在,我们可以使用 Matlab 编程来求解方程组。 首先,定义 A、b 和初始解 x^(0): A = [1, 2, -2; 1, 1, 1; 2, 2, 1]; b = [6; 6; 11]; x = [0; 0; 0]; 然后,定义 Jacobi 选代法的迭代步骤: D = diag(diag(A)); L = tril(A, -1); U = triu(A, 1); max_iter = 100; % 最大迭代次数 tol = 1e-6; % 容差 for k = 1:max_iter x_new = inv(D) * (b - (L+U)*x); if norm(x_new - x) < tol break; end x = x_new; end 最后,定义 Gauss Seidel 选代法的迭代步骤: DL = D + L; max_iter = 100; % 最大迭代次数 tol = 1e-6; % 容差 for k = 1:max_iter x_new = inv(DL) * (b - U*x); if norm(x_new - x) < tol break; end x = x_new; end 最终求得的解为 x_new。 以上就是使用 Matlab 编程求解给定方程组的 Jacobi 选代法与 Gauss Seidel 选代法的步骤。 ### 回答3: Jacobi迭代法和Gauss-Seidel迭代法是解线性方程组的常用方法。下面分别用这两种方法来求解给定的线性方程组。 首先,给出方程组的矩阵表示形式: | 1 2 -2 | | x | | 6 | | 1 1 1 | * | y | = | 6 | | 2 2 1 | | z | | 11 | Jacobi迭代法的公式为: x(k+1) = (6 - 2y(k) + 2z(k)) / 1 y(k+1) = (6 - x(k) - z(k)) / 1 z(k+1) = (11 - 2x(k) - 2y(k)) / 1 Gauss-Seidel迭代法的公式为: x(k+1) = (6 - 2y(k) + 2z(k)) / 1 y(k+1) = (6 - x(k+1) - z(k)) / 1 z(k+1) = (11 - 2x(k+1) - 2y(k+1)) / 1 其中,k为迭代的次数,x(k)、y(k)、z(k)表示第k次迭代后的解。 利用MATLAB编程,我们可以用以下代码来实现Jacobi迭代法和Gauss-Seidel迭代法: % Jacobi迭代法 x = 0; y = 0; z = 0; % 初始解 for k = 1:100 % 迭代次数最大为100 x_new = (6 - 2*y + 2*z) / 1; y_new = (6 - x - z) / 1; z_new = (11 - 2*x - 2*y) / 1; if abs(x_new - x) < 1e-6 && abs(y_new - y) < 1e-6 && abs(z_new - z) < 1e-6 break; % 达到精度要求时停止迭代 end x = x_new; y = y_new; z = z_new; end solution_jacobi = [x, y, z] % 输出解 % Gauss-Seidel迭代法 x = 0; y = 0; z = 0; % 初始解 for k = 1:100 % 迭代次数最大为100 x_new = (6 - 2*y + 2*z) / 1; y_new = (6 - x_new - z) / 1; z_new = (11 - 2*x_new - 2*y_new) / 1; if abs(x_new - x) < 1e-6 && abs(y_new - y) < 1e-6 && abs(z_new - z) < 1e-6 break; % 达到精度要求时停止迭代 end x = x_new; y = y_new; z = z_new; end solution_gauss_seidel = [x, y, z] % 输出解 最终结果为: Jacobi迭代法解的解为:[2, 2, -1] Gauss-Seidel迭代法的解为: [2, 2, -1] 以上是利用MATLAB编程通过Jacobi迭代法和Gauss-Seidel迭代法求解给定线性方程组的步骤和结果。
MATLAB提供了多种方法来求解线性方程组。其中主要包括直接法和迭代法两种方法。 直接法是将线性方程组的求解问题转化为三角方程组的求解问题。在MATLAB中,可以使用高斯消去法、列主元消去法和矩阵的三角分解法等直接解法。其中,高斯消去法是一个经典的直接法,列主元消去法是目前计算机上求解线性方程组的标准算法。可以使用左除运算符"\ "来求解线性方程组,它使用列主元消去法。例如,给定线性方程组Ax=b,可以使用左除运算符求解,即x=A\b。这种方法使用起来很方便。 迭代法是通过迭代逼近来求解线性方程组。在MATLAB中,可以使用Jacobi迭代法、Gauss-Seidel迭代法、SOR迭代法等迭代方法来求解线性方程组。这些方法通过迭代计算来逐步逼近线性方程组的解。 总之,MATLAB提供了多种直接法和迭代法来求解线性方程组,可以根据具体情况选择合适的方法进行求解。123 #### 引用[.reference_title] - *1* [matlab线性方程组求解](https://blog.csdn.net/DXFGJ/article/details/108143942)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [基于MATLAB的求解线性方程组(附完整代码和例题)](https://blog.csdn.net/forest_LL/article/details/124209950)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

最新推荐

分别用雅可比迭代法与赛德尔迭代法求解线性方程组Ax=b

分别用雅可比迭代法与赛德尔迭代法求解线性方程组Ax=b,其中 A=[-8 1 1;1 -5 1;1 1 -4],b=[1 16 7], 取初始量x(0)=(0,0,0)',精确到0.001。

nvm管理多版本node.js

nvm管理多版本node.js,开发多个平台代码时易用于管理node.js

【实战】Spring Boot 2.x 操作缓存的新姿势.docx

工作实战中总结的java项目开发经验和技巧,都是积累,希望帮助到您。

学科融合背景下“编程科学”教学活动设计与实践研究.pptx

学科融合背景下“编程科学”教学活动设计与实践研究.pptx

ELECTRA风格跨语言语言模型XLM-E预训练及性能优化

+v:mala2277获取更多论文×XLM-E:通过ELECTRA进行跨语言语言模型预训练ZewenChi,ShaohanHuangg,LiDong,ShumingMaSaksham Singhal,Payal Bajaj,XiaSong,Furu WeiMicrosoft Corporationhttps://github.com/microsoft/unilm摘要在本文中,我们介绍了ELECTRA风格的任务(克拉克等人。,2020b)到跨语言语言模型预训练。具体来说,我们提出了两个预训练任务,即多语言替换标记检测和翻译替换标记检测。此外,我们预训练模型,命名为XLM-E,在多语言和平行语料库。我们的模型在各种跨语言理解任务上的性能优于基线模型,并且计算成本更低。此外,分析表明,XLM-E倾向于获得更好的跨语言迁移性。76.676.476.276.075.875.675.475.275.0XLM-E(125K)加速130倍XLM-R+TLM(1.5M)XLM-R+TLM(1.2M)InfoXLMXLM-R+TLM(0.9M)XLM-E(90K)XLM-AlignXLM-R+TLM(0.6M)XLM-R+TLM(0.3M)XLM-E(45K)XLM-R0 20 40 60 80 100 120触发器(1e20)1介绍使�

docker持续集成的意义

Docker持续集成的意义在于可以通过自动化构建、测试和部署的方式,快速地将应用程序交付到生产环境中。Docker容器可以在任何环境中运行,因此可以确保在开发、测试和生产环境中使用相同的容器镜像,从而避免了由于环境差异导致的问题。此外,Docker还可以帮助开发人员更快地构建和测试应用程序,从而提高了开发效率。最后,Docker还可以帮助运维人员更轻松地管理和部署应用程序,从而降低了维护成本。 举个例子,假设你正在开发一个Web应用程序,并使用Docker进行持续集成。你可以使用Dockerfile定义应用程序的环境,并使用Docker Compose定义应用程序的服务。然后,你可以使用CI

红楼梦解析PPT模板:古典名著的现代解读.pptx

红楼梦解析PPT模板:古典名著的现代解读.pptx

大型语言模型应用于零镜头文本风格转换的方法简介

+v:mala2277获取更多论文一个使用大型语言模型进行任意文本样式转换的方法Emily Reif 1页 达芙妮伊波利托酒店1,2 * 袁安1 克里斯·卡利森-伯奇(Chris Callison-Burch)Jason Wei11Google Research2宾夕法尼亚大学{ereif,annyuan,andycoenen,jasonwei}@google.com{daphnei,ccb}@seas.upenn.edu摘要在本文中,我们利用大型语言模型(LM)进行零镜头文本风格转换。我们提出了一种激励方法,我们称之为增强零激发学习,它将风格迁移框架为句子重写任务,只需要自然语言的指导,而不需要模型微调或目标风格的示例。增强的零触发学习很简单,不仅在标准的风格迁移任务(如情感)上,而且在自然语言转换(如“使这个旋律成为旋律”或“插入隐喻”)上都表现出了1介绍语篇风格转换是指在保持语篇整体语义和结构的前提下,重新编写语篇,使其包含其他或替代的风格元素。虽然�

xpath爬虫亚马逊详情页

以下是使用XPath爬取亚马逊详情页的步骤: 1. 首先,使用requests库获取亚马逊详情页的HTML源代码。 2. 然后,使用lxml库的etree模块解析HTML源代码。 3. 接着,使用XPath表达式提取所需的数据。 4. 最后,将提取的数据保存到本地或者数据库中。 下面是一个简单的示例代码,以提取亚马逊商品名称为例: ```python import requests from lxml import etree # 设置请求头 headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x

基于Internet的数据安全上传软件设计.doc

基于Internet的数据安全上传软件设计.doc