我要用pytorch的
时间: 2023-07-12 10:42:22 浏览: 97
好的,以下是一个使用PyTorch实现的ResNet50模型在CIFAR-10数据集上进行训练的示例代码,你可以在此基础上进行修改和调整:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
# 加载数据集
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
trainset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
testset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
trainloader = DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
testloader = DataLoader(testset, batch_size=128, shuffle=False, num_workers=2)
# 定义ResNet50模型
class ResNet50(nn.Module):
def __init__(self):
super(ResNet50, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.layer1 = nn.Sequential(
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True)
)
self.layer2 = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True)
)
self.layer3 = nn.Sequential(
nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True)
)
self.layer4 = nn.Sequential(
nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True)
)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512, 10)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.layer1(x) + x
x = self.layer2(x) + x
x = self.layer3(x) + x
x = self.layer4(x) + x
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
# 训练模型
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = ResNet50().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=1e-4)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.1)
for epoch in range(50):
model.train()
train_loss = 0
correct = 0
total = 0
for i, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
train_acc = 100. * correct / total
train_loss /= (i+1)
model.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for i, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = model(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
test_acc = 100. * correct / total
test_loss /= (i+1)
print('Epoch %d | Train Loss: %.3f | Train Acc: %.3f%% | Test Loss: %.3f | Test Acc: %.3f%%'
% (epoch+1, train_loss, train_acc, test_loss, test_acc))
scheduler.step()
```
在上面的代码中,我们使用了PyTorch实现的ResNet50模型,并在模型的基础上构建了一个CIFAR-10分类器。我们还使用了数据增强来增加模型的鲁棒性,并使用了L2正则化来避免过拟合。最后,我们使用SGD优化器来训练模型,并在50个epoch后进行评估。
阅读全文