STM32F4用HAL库等效采样高频信号代码
时间: 2024-02-18 22:05:09 浏览: 86
以下是一个基于STM32F4的HAL库的等效采样高频信号的代码示例:
```c
#include "stm32f4xx_hal.h"
#define ADC_BUFFER_SIZE 1024 // ADC缓冲区大小
#define ADC_SAMPLING_FREQ 500000 // ADC采样频率
#define DAC_SAMPLING_FREQ 1000000 // DAC输出频率
#define ADC_FREQ_DIVIDER 2 // ADC采样频率分频器
#define DAC_FREQ_DIVIDER 5 // DAC输出频率分频器
#define ADC_PRESCALER 4 // ADC时钟预分频器
#define ADC_CLOCK_DIVIDER ADC_CLOCK_SYNC_PCLK_DIV4 // ADC时钟分频器
ADC_HandleTypeDef hadc1;
DAC_HandleTypeDef hdac;
static uint32_t adc_buffer[ADC_BUFFER_SIZE];
static uint32_t adc_buffer_index = 0;
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DAC_Init(void);
static void MX_ADC1_Init(void);
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc);
int main(void)
{
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_DAC_Init();
MX_ADC1_Init();
HAL_DAC_Start(&hdac, DAC_CHANNEL_1);
while (1)
{
uint32_t adc_value = adc_buffer[adc_buffer_index];
HAL_DAC_SetValue(&hdac, DAC_CHANNEL_1, DAC_ALIGN_12B_R, adc_value);
adc_buffer_index++;
if (adc_buffer_index >= ADC_BUFFER_SIZE) {
adc_buffer_index = 0;
}
}
}
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)
{
if (hadc->Instance == ADC1) {
HAL_ADC_Stop_IT(hadc); // 停止ADC转换
adc_buffer_index = 0; // 重置缓冲区索引
}
}
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 16;
RCC_OscInitStruct.PLL.PLLN = 400;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
{
Error_Handler();
}
}
static void MX_ADC1_Init(void)
{
ADC_ChannelConfTypeDef sConfig = {0};
__HAL_RCC_ADC1_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
GPIO_InitTypeDef GPIO_InitStruct = {0};
GPIO_InitStruct.Pin = GPIO_PIN_0;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.ScanConvMode = DISABLE;
hadc1.Init.ContinuousConvMode = ENABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 1;
hadc1.Init.DMAContinuousRequests = DISABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
sConfig.Channel = ADC_CHANNEL_0;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
HAL_ADC_Start_IT(&hadc1); // 启动ADC转换并使用中断
}
static void MX_DAC_Init(void)
{
DAC_ChannelConfTypeDef sConfig = {0};
__HAL_RCC_DAC_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
GPIO_InitTypeDef GPIO_InitStruct = {0};
GPIO_InitStruct.Pin = GPIO_PIN_4;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
hdac.Instance = DAC;
if (HAL_DAC_Init(&hdac) != HAL_OK)
{
Error_Handler();
}
sConfig.DAC_Trigger = DAC_TRIGGER_NONE;
sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE;
if (HAL_DAC_ConfigChannel(&hdac, &sConfig, DAC_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
HAL_DAC_Start(&hdac, DAC_CHANNEL_1); // 启动DAC转换
}
static void MX_GPIO_Init(void)
{
__HAL_RCC_GPIOA_CLK_ENABLE();
}
void Error_Handler(void)
{
__disable_irq();
while (1)
{
}
}
```
该代码中使用了STM32F4的ADC和DAC模块,ADC模块以高速采样频率采集信号并使用中断填充一个较大的缓冲区,DAC模块以较低的输出频率从该缓冲区中读取数据并输出。ADC和DAC模块的时钟分频器和分频器设置可以根据具体的信号频率进行调整。
阅读全文