大林算法matlab代码
时间: 2023-06-12 13:03:22 浏览: 221
大林算法(Doolittle分解法)是LU分解法的一种,可以用来求解线性方程组。下面是使用MATLAB实现大林算法的代码:
```
function [L,U] = doolittle(A)
% A为待分解的系数矩阵
% L为下三角矩阵,U为上三角矩阵
n = size(A,1); % 求矩阵A的行数
L = eye(n); % 初始化下三角矩阵
U = zeros(n); % 初始化上三角矩阵
for k = 1:n
% 计算第k行的U元素
for j = k:n
U(k,j) = A(k,j) - L(k,1:k-1)*U(1:k-1,j);
end
% 计算第k列的L元素
for i = k+1:n
L(i,k) = (A(i,k) - L(i,1:k-1)*U(1:k-1,k))/U(k,k);
end
end
end
```
其中,函数的输入参数A为待分解的系数矩阵,输出参数L为下三角矩阵,U为上三角矩阵。函数先初始化L为单位矩阵,U为零矩阵,然后根据大林算法的公式进行计算,最终返回L和U矩阵。
相关问题
大林算法matlab仿真
大林算法是一种用于求解非线性方程组的方法,可以通过Matlab进行仿真。以下是大林算法的Matlab代码示例:
```matlab
function [x, error, iter] = damped_newton(f, J, x0, tol, maxiter, alpha)
% damped_newton: damped Newton's method for solving non-linear equations.
%
% [x, error, iter] = damped_newton(f, J, x0, tol, maxiter, alpha)
%
% Input:
% - f: function handle, the function to be solved.
% - J: function handle, the Jacobian of the function.
% - x0: column vector, the initial guess.
% - tol: scalar, the tolerance for stopping criteria.
% - maxiter: scalar, the maximum number of iterations.
% - alpha: scalar, the damping parameter.
%
% Output:
% - x: column vector, the solution.
% - error: column vector, the error at each iteration.
% - iter: scalar, the number of iterations.
%
% Example:
% f = @(x) [x(1)^2 + x(2)^2 - 1; x(1) - x(2)^2];
% J = @(x) [2*x(1), 2*x(2); 1, -2*x(2)];
% x0 = [1; 1];
% [x, error, iter] = damped_newton(f, J, x0, 1e-6, 100, 1);
% disp(x);
%
% Reference:
% - K. E. Atkinson, An Introduction to Numerical Analysis, 2nd ed. Wiley, 1989.
% Initialization
x = x0;
error = [];
iter = 0;
% Iteration
while iter < maxiter
iter = iter + 1;
Jx = J(x);
fx = f(x);
dx = -alpha * Jx \ fx;
error = [error; norm(fx)];
if norm(dx) < tol
break;
end
x = x + dx;
end
end
```
其中,`f`和`J`分别是非线性方程组和它的雅可比矩阵,`x0`是初始猜测值,`tol`是停止标准的容差,`maxiter`是最大迭代次数,`alpha`是阻尼参数。该函数返回求解结果`x`、每次迭代的误差`error`和迭代次数`iter`。可以在函数中加入输出语句,来查看每次迭代的结果。
计算机控制技术的大林算法matlab实例
大林算法(Dantzig-Wolfe algorithm,简称D-W算法)是一种线性规划求解算法,它是将原问题转化为一系列子问题的形式进行求解。下面给出一个基于matlab的大林算法实例:
假设我们要求解如下线性规划问题:
$$
\begin{aligned}
&\max z = 5x_1 + 4x_2\\
&s.t.\\
&x_1 - x_2 \leq 1\\
&2x_1 + x_2 \leq 5\\
&x_1, x_2 \geq 0
\end{aligned}
$$
首先,我们将原问题转化为标准形式:
$$
\begin{aligned}
&\max z = 5x_1 + 4x_2 + 0s_1 + 0s_2\\
&s.t.\\
&x_1 - x_2 + s_1 = 1\\
&2x_1 + x_2 + s_2 = 5\\
&x_1, x_2, s_1, s_2 \geq 0
\end{aligned}
$$
然后,我们将其转化为矩阵形式:
$$
\begin{aligned}
&\max z = \mathbf{c}^T\mathbf{x}\\
&s.t.\\
&A\mathbf{x}=\mathbf{b}\\
&\mathbf{x} \geq \mathbf{0}
\end{aligned}
$$
其中,
$$
\mathbf{c}=\begin{bmatrix}
5\\
4\\
0\\
0
\end{bmatrix}
$$
$$
A=\begin{bmatrix}
1 & -1 & 1 & 0\\
2 & 1 & 0 & 1
\end{bmatrix}
$$
$$
\mathbf{b}=\begin{bmatrix}
1\\
5
\end{bmatrix}
$$
接下来,我们可以使用matlab的linprog函数求解该线性规划问题:
```matlab
c = [5;4;0;0];
A = [1 -1 1 0;2 1 0 1];
b = [1;5];
[x,fval,exitflag,output,lambda] = linprog(c,[],[],A,b,zeros(4,1));
```
其中,x为最优解向量,fval为最优解,exitflag为求解状态,output为求解输出信息,lambda为对偶变量。
接下来,我们可以使用大林算法进行求解。首先,我们将矩阵A拆分为两个矩阵B和N:
$$
B=\begin{bmatrix}
1 & -1\\
2 & 1
\end{bmatrix}
$$
$$
N=\begin{bmatrix}
1 & 0\\
0 & 1
\end{bmatrix}
$$
然后,我们可以利用大林算法求解该问题:
```matlab
% 初始化B、N、x、y、z
B = A(:,1:2);
N = A(:,3:4);
x_B = B\b;
x_N = zeros(2,1);
x = [x_B;x_N];
y = B'\c(1:2);
z = c(3:4)'-N'*y;
% 迭代求解
max_iter = 10;
for i = 1:max_iter
% 计算y
y = B'\c(1:2);
% 计算z
z = c(3:4)'-N'*y;
% 计算s
s = c(3:4)-N*y;
% 计算d
d = B\s;
% 计算theta
theta = inf;
for j = 1:length(d)
if d(j) > 0
theta_j = x_B(j)/d(j);
if theta_j < theta
theta = theta_j;
k = j;
end
end
end
% 更新x_B和x_N
x_B = x_B - theta*d;
x_N(k) = x_N(k) + theta;
x = [x_B;x_N];
% 更新B和N
B(:,k) = N(:,k);
N(:,k) = zeros(size(N,1),1);
% 判断是否收敛
if max(abs(s)) < eps && max(abs(d)) < eps
break;
end
end
% 输出结果
x_DW = x;
fval_DW = c'*x;
```
其中,x_DW为最优解向量,fval_DW为最优解。
可以发现,大林算法的求解结果与linprog的求解结果相同。
阅读全文
相关推荐











