计算1+1/3+1/5+...的和
时间: 2023-10-04 16:13:12 浏览: 149
这是一个无穷级数,可以用调和级数的思想来求解。
首先,对于一个调和级数1+1/2+1/3+...,我们知道它是发散的,也就是说,它的和是无限大。但是,如果我们只取其中的奇数项,即1+1/3+1/5+...,那么这个级数是收敛的。具体来说,它的和可以表示为:
1+1/3+1/5+... = ln(2)
其中,ln(2)表示自然对数的2的底数。
因此,要计算1+1/3+1/5+...的和,只需要计算ln(2)即可。
阅读全文