多目标优化算法非支配排序遗传 算法Ⅱ
时间: 2023-12-01 17:43:41 浏览: 78
多目标优化算法非支配排序遗传算法Ⅱ(NSGA-II)是一种常用的多目标优化算法,它是对非支配排序遗传算法(NSGA)的改进。NSGA-II在保留NSGA的非支配排序和拥挤度距离计算的基础上,引入了快速非支配排序和精英策略,以提高算法的收敛速度和搜索能力。
以下是NSGA-II算法的主要步骤:
1. 初始化种群,包括个体的编码方式和初始值。
2. 计算每个个体的适应度值,即目标函数值。
3. 进行非支配排序,将种群中的个体按照非支配等级进行排序。
4. 计算每个个体的拥挤度距离,以保证种群的多样性。
5. 选择新的种群,包括精英策略和锦标赛选择策略。
6. 对新的种群进行交叉和变异操作,生成下一代种群。
7. 重复步骤2-6,直到满足停止条件。
以下是NSGA-II算法的Python实现示例:
```python
# 引入相关库
import random
import numpy as np
# 定义目标函数
def obj_func(x):
f1 = x[0]**2 + x[1]**2
f2 = (x[0]-1)**2 + x[1]**2
return [f1, f2]
# 定义种群类
class Individual:
def __init__(self, x):
self.x = x
self.obj = obj_func(x)
self.rank = None
self.crowding_distance = None
# 定义NSGA-II算法类
class NSGA2:
def __init__(self, pop_size, n_generations, p_crossover, p_mutation, n_obj):
self.pop_size = pop_size
self.n_generations = n_generations
self.p_crossover = p_crossover
self.p_mutation = p_mutation
self.n_obj = n_obj
self.population = None
# 初始化种群
def initialize_population(self):
self.population = []
for i in range(self.pop_size):
x = np.random.uniform(-5, 5, size=self.n_obj)
self.population.append(Individual(x))
# 计算非支配排序
def non_dominated_sort(self, population):
fronts = [[]]
for individual in population:
individual.domination_count = 0
individual.dominated_solutions = []
for other_individual in population:
if individual.obj[0] < other_individual.obj[0] and individual.obj[1] < other_individual.obj[1]:
individual.dominated_solutions.append(other_individual)
elif individual.obj[0] > other_individual.obj[0] and individual.obj[1] > other_individual.obj[1]:
individual.domination_count += 1
if individual.domination_count == 0:
individual.rank = 0
fronts[0].append(individual)
i = 0
while len(fronts[i]) > 0:
next_front = []
for individual in fronts[i]:
for dominated_individual in individual.dominated_solutions:
dominated_individual.domination_count -= 1
if dominated_individual.domination_count == 0:
dominated_individual.rank = i + 1
next_front.append(dominated_individual)
i += 1
fronts.append(next_front)
return fronts[:-1]
# 计算拥挤度距离
def crowding_distance(self, front):
n = len(front)
for individual in front:
individual.crowding_distance = 0
for m in range(self.n_obj):
front = sorted(front, key=lambda individual: individual.obj[m])
front[0].crowding_distance = np.inf
front[-1].crowding_distance = np.inf
for i in range(1, n-1):
front[i].crowding_distance += (front[i+1].obj[m] - front[i-1].obj[m]) / (front[-1].obj[m] - front[0].obj[m])
# 选择新的种群
def selection(self, fronts):
new_population = []
n = 0
while len(new_population) < self.pop_size:
if len(fronts[n]) < self.pop_size - len(new_population):
new_population += fronts[n]
n += 1
else:
self.crowding_distance(fronts[n])
fronts[n] = sorted(fronts[n], key=lambda individual: individual.crowding_distance, reverse=True)
new_population += fronts[n][:self.pop_size - len(new_population)]
self.population = new_population
# 变异操作
def mutation(self, individual):
for i in range(self.n_obj):
if random.random() < self.p_mutation:
individual.x[i] += np.random.normal(0, 1)
individual.x[i] = max(min(individual.x[i], 5), -5)
individual.obj = obj_func(individual.x)
# 交叉操作
def crossover(self, parent1, parent2):
if random.random() < self.p_crossover:
child1 = Individual(np.zeros(self.n_obj))
child2 = Individual(np.zeros(self.n_obj))
alpha = np.random.uniform(0, 1, size=self.n_obj)
for i in range(self.n_obj):
child1.x[i] = alpha[i] * parent1.x[i] + (1 - alpha[i]) * parent2.x[i]
child2.x[i] = alpha[i] * parent2.x[i] + (1 - alpha[i]) * parent1.x[i]
child1.obj = obj_func(child1.x)
child2.obj = obj_func(child2.x)
return child1, child2
else:
return parent1, parent2
# 进化
def evolve(self):
self.initialize_population()
for i in range(self.n_generations):
fronts = self.non_dominated_sort(self.population)
self.selection(fronts)
offspring_population = []
while len(offspring_population) < self.pop_size:
parent1 = random.choice(self.population)
parent2 = random.choice(self.population)
child1, child2 = self.crossover(parent1, parent2)
self.mutation(child1)
self.mutation(child2)
offspring_population.append(child1)
if len(offspring_population) < self.pop_size:
offspring_population.append(child2)
self.population += offspring_population
# 运行NSGA-II算法
nsga2 = NSGA2(pop_size=100, n_generations=100, p_crossover=0.9, p_mutation=0.1, n_obj=2)
nsga2.evolve()
# 输出最终种群
for individual in nsga2.population:
print(individual.obj)
```
阅读全文