利用transformer生成对联的代码
时间: 2024-12-26 14:03:01 浏览: 18
利用Transformer模型生成对联通常涉及自然语言处理(NLP)任务中的文本生成,如Seq2Seq模型。下面是一个简化的Python示例,使用Hugging Face的transformers库和PyTorch来训练一个基本的对联生成模型:
```python
import torch
from transformers import BertTokenizer, BertForSequenceClassification, Seq2SeqTrainer, Seq2SeqTrainingArguments
# 首先加载预训练的BERT模型和tokenizer
model = BertForSequenceClassification.from_pretrained('bert-base-chinese')
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
# 对联数据处理:将对联拆分为上联、下联两部分,并创建对应的输入和标签
train_dataset = ... # 装填好上联和下联的分词后的序列数据
# 对联应保持结构一致,比如格式为 "上联<sep>下联"
def preprocess_data(data):
input_ids, attention_mask = [], []
for pair in data:
inputs = tokenizer(pair['上联'] + '<sep>' + pair['下联'], return_tensors='pt', padding=True)
input_ids.append(inputs['input_ids'])
attention_mask.append(inputs['attention_mask'])
return input_ids, attention_mask
input_ids, attention_mask = preprocess_data(train_dataset)
# 定义训练参数
training_args = Seq2SeqTrainingArguments(
output_dir='./results',
num_train_epochs=3,
per_device_train_batch_size=8,
per_device_eval_batch_size=16,
learning_rate=5e-5,
save_steps=10_000,
metric_for_best_model="bleu"
)
# 创建Seq2Seq Trainer
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=input_ids,
eval_dataset=input_ids,
tokenizer=tokenizer
)
# 开始训练
trainer.train()
# 训练完成后,你可以通过模型生成新的对联,例如:
generated_pair = trainer.generate(input_ids, max_length=40, min_length=20, do_sample=True)
decoded_pair = tokenizer.decode(generated_pair[0], skip_special_tokens=True)
print(f"生成的对联: {decoded_pair}")
```
阅读全文