假设我现在要使用pytorch框架做深度学习,已知我有一些火焰图像,还有一张excel表格,命名为"CDS.csv",在表格中有一列参数,标题为“temperature”,一张火焰图像对应表格中的一行参数,也就是说,我要通过图像识别,使卷积神经网络在接收到火焰图像时,自动判断它对应的参数是多少,请以此为背景,写出完整的代码,并加上注释,并且解释每个变量代表的含义

时间: 2023-06-16 12:03:33 浏览: 67
好的,以下是代码和注释: ```python import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import Dataset, DataLoader import torchvision.transforms as transforms import pandas as pd from PIL import Image # 定义数据集类,继承自Dataset class FlameDataset(Dataset): def __init__(self, csv_file, img_dir, transform=None): """ :param csv_file: csv文件路径 :param img_dir: 图像文件夹路径 :param transform: 图像变换操作 """ self.data = pd.read_csv(csv_file) # 读取csv文件 self.img_dir = img_dir self.transform = transform def __len__(self): return len(self.data) # 返回数据集大小 def __getitem__(self, index): row = self.data.iloc[index] # 获取指定行的数据 img = Image.open(self.img_dir + row['image']) # 读取对应图像 if self.transform: img = self.transform(img) # 对图像进行变换 temp = row['temperature'] # 获取对应参数 return img, temp # 返回图像和参数 # 定义卷积神经网络模型 class FlameNet(nn.Module): def __init__(self): super(FlameNet, self).__init__() self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1) self.bn1 = nn.BatchNorm2d(32) self.relu1 = nn.ReLU() self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) self.bn2 = nn.BatchNorm2d(64) self.relu2 = nn.ReLU() self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.fc1 = nn.Linear(64 * 28 * 28, 128) self.relu3 = nn.ReLU() self.fc2 = nn.Linear(128, 1) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu1(x) x = self.pool1(x) x = self.conv2(x) x = self.bn2(x) x = self.relu2(x) x = self.pool2(x) x = x.view(-1, 64 * 28 * 28) x = self.fc1(x) x = self.relu3(x) x = self.fc2(x) return x # 定义训练函数 def train(model, train_loader, criterion, optimizer, device): model.train() running_loss = 0.0 for i, data in enumerate(train_loader): inputs, labels = data[0].to(device), data[1].to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels.float().unsqueeze(1)) loss.backward() optimizer.step() running_loss += loss.item() return running_loss / len(train_loader) # 定义测试函数 def test(model, test_loader, criterion, device): model.eval() running_loss = 0.0 with torch.no_grad(): for i, data in enumerate(test_loader): inputs, labels = data[0].to(device), data[1].to(device) outputs = model(inputs) loss = criterion(outputs, labels.float().unsqueeze(1)) running_loss += loss.item() return running_loss / len(test_loader) if __name__ == '__main__': # 设置超参数 batch_size = 16 learning_rate = 0.001 num_epochs = 10 # 加载数据集 transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) train_dataset = FlameDataset('CDS.csv', 'images/', transform=transform) test_dataset = FlameDataset('CDS.csv', 'images/', transform=transform) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False) # 实例化模型、损失函数和优化器 model = FlameNet() criterion = nn.MSELoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) # 将模型和数据移动到GPU device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.to(device) # 训练模型 for epoch in range(num_epochs): train_loss = train(model, train_loader, criterion, optimizer, device) test_loss = test(model, test_loader, criterion, device) print('Epoch [{}/{}], Train Loss: {:.4f}, Test Loss: {:.4f}' .format(epoch+1, num_epochs, train_loss, test_loss)) ``` 代码解释: - `FlameDataset` 类定义了数据集类,其中 `__init__` 方法初始化了数据集的属性,`__len__` 方法返回数据集大小,`__getitem__` 方法返回指定索引的图像和对应参数。 - `FlameNet` 类定义了卷积神经网络模型,其中 `__init__` 方法定义了模型的各个层,`forward` 方法定义了模型的前向计算过程。 - `train` 函数定义了训练函数,其中 `model.train()` 表示进入训练模式,`optimizer.zero_grad()` 表示清除梯度,`loss.backward()` 表示反向传播计算梯度,`optimizer.step()` 表示更新参数。 - `test` 函数定义了测试函数,其中 `model.eval()` 表示进入测试模式,`with torch.no_grad():` 表示不计算梯度。 - 在 `main` 函数中,我们先定义了超参数,然后定义了数据集的变换操作,接着加载数据集并实例化模型、损失函数和优化器。然后将模型和数据移动到 GPU 上,最后进行模型训练。

相关推荐

最新推荐

recommend-type

Pytorch 使用opnecv读入图像由HWC转为BCHW格式方式

主要介绍了Pytorch 使用opnecv读入图像由HWC转为BCHW格式方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

Pytorch提取模型特征向量保存至csv的例子

今天小编就为大家分享一篇Pytorch提取模型特征向量保存至csv的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

使用PyTorch训练一个图像分类器实例

今天小编就为大家分享一篇使用PyTorch训练一个图像分类器实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

pytorch学习教程之自定义数据集

在训练深度学习模型之前,样本集的制作非常重要。在pytorch中,提供了一些接口和类,方便我们定义自己的数据集合,下面完整的试验自定义样本集的整个流程。 开发环境 Ubuntu 18.04 pytorch 1.0 pycharm 实验目的 ...
recommend-type

PyTorch学习笔记(二)图像数据预处理

Environment OS: macOS Mojave Python version: 3.7 ...本文记录了使用 PyTorch 实现图像数据预处理的方法,包括数据增强和标准化。主要的工具为 torchvision.transform 模块中的各种类,要求传入的图片为 PI
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

spring添加xml配置文件

1. 创建一个新的Spring配置文件,例如"applicationContext.xml"。 2. 在文件头部添加XML命名空间和schema定义,如下所示: ``` <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。