白鲸优化算法python代码
时间: 2023-10-11 09:07:52 浏览: 188
以下是一个简单的白鲸优化算法的 Python 实现示例:
```python
import numpy as np
# 定义目标函数
def objective_function(x):
return np.sum(np.square(x))
# 定义白鲸优化算法
def whale_optimization_algorithm(obj_func, num_iterations=100, num_whales=10, search_space=(-100, 100), a=2):
# 初始化鲸群
search_min, search_max = search_space
dimensions = len(search_min)
whales = []
for i in range(num_whales):
whale = np.random.uniform(search_min, search_max, dimensions)
whales.append(whale)
# 开始优化
for t in range(num_iterations):
# 计算当前最优解
current_best_whale = None
current_best_score = None
for whale in whales:
score = obj_func(whale)
if current_best_score is None or score < current_best_score:
current_best_score = score
current_best_whale = whale
# 遍历所有鲸
for i, whale in enumerate(whales):
# 随机选择一个领袖鲸
leader_index = np.random.randint(num_whales)
leader = whales[leader_index]
# 计算距离和方向
distance = np.abs(leader - whale)
direction = leader - whale
# 更新位置
a = 2 - t * ((2) / num_iterations) # 动态线性降温参数
b = 1
l = np.random.uniform(-1, 1, dimensions)
p = np.random.uniform(0, 1, dimensions)
A = a * np.multiply(np.multiply(2 * b, p) - b, np.abs(a * current_best_whale - whale))
C = np.multiply(2 * l, distance)
new_whale = whale + A - C
# 边界处理
new_whale = np.clip(new_whale, search_min, search_max)
# 更新鲸
whales[i] = new_whale
return current_best_whale, current_best_score
```
使用示例:
```python
search_min = np.array([-5, -5, -5])
search_max = np.array([5, 5, 5])
best_whale, best_score = whale_optimization_algorithm(objective_function, num_iterations=100, num_whales=10, search_space=(search_min, search_max))
print('Best solution: ', best_whale)
print('Best objective function value: ', best_score)
```
注:以上代码仅作为示例,实际应用中可能需要根据具体情况进行调整和优化。
阅读全文