c# 二维下料优化排版 遗传算法代码
时间: 2023-09-08 11:10:32 浏览: 239
代码 基于遗传算法的优化计算——建模自变量降维代码.rar
以下是一个简单的C#二维下料优化排版遗传算法的代码示例:
```csharp
using System;
using System.Collections.Generic;
namespace TwoDimensionalCuttingProblem
{
class Program
{
static void Main(string[] args)
{
// 初始材料大小
int width = 800;
int height = 600;
// 初始零件列表
List<Part> parts = new List<Part>();
parts.Add(new Part(200, 100));
parts.Add(new Part(300, 100));
parts.Add(new Part(150, 150));
parts.Add(new Part(250, 200));
// 遗传算法参数
int populationSize = 20;
int generationCount = 1000;
double mutationRate = 0.1;
double crossoverRate = 0.8;
// 初始化遗传算法
GeneticAlgorithm ga = new GeneticAlgorithm(width, height, parts, populationSize, mutationRate, crossoverRate);
// 进行遗传算法优化
for (int i = 0; i < generationCount; i++)
{
ga.Evolve();
Console.WriteLine("Generation {0}: Best Fit = {1}", i + 1, ga.BestIndividual.Fitness);
}
// 输出最优结果
Console.WriteLine("\nBest Solution:");
Console.WriteLine(ga.BestIndividual.ToString());
}
}
// 表示一个零件
class Part
{
public int Width { get; set; }
public int Height { get; set; }
public Part(int width, int height)
{
Width = width;
Height = height;
}
}
// 表示一个布局方案
class Layout
{
public int Width { get; set; }
public int Height { get; set; }
public List<Part> Parts { get; set; }
public Layout(int width, int height, List<Part> parts)
{
Width = width;
Height = height;
Parts = parts;
}
// 计算布局方案的适应度
public double Fitness
{
get
{
double fitness = 0;
foreach (Part part in Parts)
{
if (part.X + part.Width > Width || part.Y + part.Height > Height)
{
fitness -= 1000000; // 超出材料范围,适应度大幅降低
}
else
{
fitness += part.Width * part.Height;
}
}
return fitness;
}
}
public override string ToString()
{
string str = string.Format("Layout ({0} x {1}):", Width, Height);
foreach (Part part in Parts)
{
str += string.Format("\n({0}, {1}, {2}, {3})", part.X, part.Y, part.Width, part.Height);
}
return str;
}
}
// 表示一个布局方案的个体
class Individual
{
public Layout Layout { get; set; }
public double Fitness { get; set; }
public Individual(Layout layout)
{
Layout = layout;
Fitness = layout.Fitness;
}
public override string ToString()
{
return Layout.ToString();
}
}
// 遗传算法
class GeneticAlgorithm
{
private int Width { get; set; }
private int Height { get; set; }
private List<Part> Parts { get; set; }
private int PopulationSize { get; set; }
private double MutationRate { get; set; }
private double CrossoverRate { get; set; }
private List<Individual> Population { get; set; }
public Individual BestIndividual { get; set; }
public GeneticAlgorithm(int width, int height, List<Part> parts, int populationSize, double mutationRate, double crossoverRate)
{
Width = width;
Height = height;
Parts = parts;
PopulationSize = populationSize;
MutationRate = mutationRate;
CrossoverRate = crossoverRate;
// 初始化种群
Population = new List<Individual>();
for (int i = 0; i < PopulationSize; i++)
{
Layout layout = RandomLayout();
Population.Add(new Individual(layout));
}
// 计算初始最优解
BestIndividual = Population[0];
foreach (Individual individual in Population)
{
if (individual.Fitness > BestIndividual.Fitness)
{
BestIndividual = individual;
}
}
}
// 随机生成一个布局方案
private Layout RandomLayout()
{
List<Part> parts = new List<Part>();
foreach (Part part in Parts)
{
parts.Add(new Part(part.Width, part.Height));
}
Random rand = new Random();
foreach (Part part in parts)
{
part.X = rand.Next(Width - part.Width);
part.Y = rand.Next(Height - part.Height);
}
return new Layout(Width, Height, parts);
}
// 进化种群
public void Evolve()
{
// 选择
List<Individual> newPopulation = new List<Individual>();
for (int i = 0; i < PopulationSize; i++)
{
Individual parent1 = Selection();
Individual parent2 = Selection();
// 交叉
Individual child = Crossover(parent1, parent2);
// 变异
Mutate(child);
newPopulation.Add(child);
}
Population = newPopulation;
// 计算适应度
foreach (Individual individual in Population)
{
individual.Fitness = individual.Layout.Fitness;
}
// 更新最优解
foreach (Individual individual in Population)
{
if (individual.Fitness > BestIndividual.Fitness)
{
BestIndividual = individual;
}
}
}
// 选择操作
private Individual Selection()
{
List<Individual> tournament = new List<Individual>();
Random rand = new Random();
for (int i = 0; i < 5; i++)
{
tournament.Add(Population[rand.Next(PopulationSize)]);
}
Individual bestIndividual = tournament[0];
foreach (Individual individual in tournament)
{
if (individual.Fitness > bestIndividual.Fitness)
{
bestIndividual = individual;
}
}
return bestIndividual;
}
// 交叉操作
private Individual Crossover(Individual parent1, Individual parent2)
{
Random rand = new Random();
if (rand.NextDouble() < CrossoverRate)
{
List<Part> childParts = new List<Part>();
foreach (Part part in Parts)
{
int x = Math.Max(parent1.Layout.Parts[Parts.IndexOf(part)].X, parent2.Layout.Parts[Parts.IndexOf(part)].X);
int y = Math.Max(parent1.Layout.Parts[Parts.IndexOf(part)].Y, parent2.Layout.Parts[Parts.IndexOf(part)].Y);
childParts.Add(new Part(part.Width, part.Height) { X = x, Y = y });
}
return new Individual(new Layout(Width, Height, childParts));
}
else
{
return parent1;
}
}
// 变异操作
private void Mutate(Individual individual)
{
Random rand = new Random();
if (rand.NextDouble() < MutationRate)
{
List<Part> mutatedParts = new List<Part>();
foreach (Part part in Parts)
{
Part mutatedPart = new Part(part.Width, part.Height) { X = part.X, Y = part.Y };
if (rand.NextDouble() < 0.5)
{
mutatedPart.X = rand.Next(Width - part.Width);
}
else
{
mutatedPart.Y = rand.Next(Height - part.Height);
}
mutatedParts.Add(mutatedPart);
}
individual.Layout = new Layout(Width, Height, mutatedParts);
}
}
}
}
```
在这个代码示例中,我们使用了遗传算法来优化二维下料的布局方案。具体来说,我们将每个零件看作是一个矩形,然后将这些矩形排列在一个大矩形(即材料)中,使得它们不会相互重叠或超出材料范围。我们使用遗传算法来搜索最优的排列方案。
在这个代码示例中,我们定义了三个类:`Part` 表示一个零件,`Layout` 表示一个布局方案,`Individual` 表示一个布局方案的个体。我们还定义了一个 `GeneticAlgorithm` 类来实现遗传算法。
在 `GeneticAlgorithm` 类中,我们使用了一些常见的遗传算法操作。具体来说,我们通过 `Selection` 方法来选择父代个体,通过 `Crossover` 方法来交叉两个父代个体生成子代个体,通过 `Mutate` 方法来对子代个体进行变异,通过 `Evolve` 方法来进化整个种群。我们还定义了一个 `BestIndividual` 属性来记录当前最优的布局方案。
在 `Layout` 类中,我们定义了一个 `Fitness` 属性来计算布局方案的适应度。具体来说,我们将每个零件的面积作为适应度的一部分,但是如果某个零件超出了材料范围,则将适应度大幅降低。
在 `Main` 方法中,我们使用了以上定义的类来实现二维下料的优化排版。我们首先定义了一个初始的材料大小和零件列表,然后定义了遗传算法的参数。接着,我们初始化遗传算法,然后进行遗传算法的优化,最终输出最优结果。
请注意,这个代码示例只是一个简单的实现,并不一定是最优的。您可以根据实际情况对其进行修改和改进。
阅读全文