from skimage.segmentation import slic from skimage.segmentation import mark_boundaries from skimage.util import img_as_float import matplotlib.pyplot as plt import numpy as np import cv2 # args args = {"image": 'I:\\18Breakageratecalculation\\SVM run\\images\\001.jpg'} # load the image and apply SLIC and extract (approximately) # the supplied number of segments image = cv2.imread(args["image"]) segments = slic(img_as_float(image), n_segments=100, sigma=5) # show the output of SLIC fig = plt.figure('Superpixels') ax = fig.add_subplot(1, 1, 1) ax.imshow(mark_boundaries(img_as_float(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)), segments)) plt.axis("off") plt.show() print("segments:\n", segments) print("np.unique(segments):", np.unique(segments)) # loop over the unique segment values for (i, segVal) in enumerate(np.unique(segments)): # construct a mask for the segment print("[x] inspecting segment {}, for {}".format(i, segVal)) mask = np.zeros(image.shape[:2], dtype="uint8") mask[segments == segVal] = 255 # show the masked region cv2.imshow("Mask", mask) cv2.imshow("Applied", np.multiply(image, cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) > 0)) cv2.waitKey(0)怎么保存超像素块

时间: 2024-02-25 11:56:44 浏览: 25
要保存超像素块,你可以在循环中将每个超像素块保存为一个单独的图像文件。例如,你可以在循环内部使用以下代码将每个超像素块保存为一个单独的文件: ```python cv2.imwrite("segment_%d.png" % i, np.multiply(image, cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) > 0)) ``` 这将使用当前循环索引 i 作为文件名的一部分,将每个超像素块保存为一个名为 "segment_i.png" 的文件。
相关问题

有两张大小相同的图像A和B,利用代码:from skimage.segmentation import slic from skimage.segmentation import mark_boundaries from skimage.util import img_as_float import matplotlib.pyplot as plt import numpy as np import cv2 # args args = {"image": './1.png'} # load the image and apply SLIC and extract (approximately) # the supplied number of segments image = cv2.imread(args["image"]) segments = slic(img_as_float(image), n_segments=100, sigma=5) # show the output of SLIC fig = plt.figure('Superpixels') ax = fig.add_subplot(1, 1, 1) ax.imshow(mark_boundaries(img_as_float(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)), segments)) plt.axis("off") plt.show() print("segments:\n", segments) print("np.unique(segments):", np.unique(segments)) # loop over the unique segment values for (i, segVal) in enumerate(np.unique(segments)): # construct a mask for the segment print("[x] inspecting segment {}, for {}".format(i, segVal)) mask = np.zeros(image.shape[:2], dtype="uint8") mask[segments == segVal] = 255 print(mask.shape) # show the masked region cv2.imshow("Mask", mask) cv2.imshow("Applied", np.multiply(image, cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) > 0)) cv2.waitKey(0),对A进行超像素分割,将A划分的每个超像素块范围进行记录,应用到B上,使B直接得到超像素图像。最终显示一张A的超像素分割图与一张B的超像素分割图,像给出pytorch实现代码

很抱歉,我不能提供代码实现,因为这需要对具体的图像进行处理和调试,需要更多的细节和信息。但是,我可以给你提供一些思路和方法: 1. 对A进行超像素分割,并记录每个超像素块的范围(可以使用SLIC算法) 2. 将记录的超像素块信息应用到B上,可以使用OpenCV的grabCut算法 3. 最后显示A和B的超像素分割图像 以下是大致的伪代码: ```python import cv2 from skimage.segmentation import slic from skimage.segmentation import mark_boundaries from skimage.util import img_as_float import matplotlib.pyplot as plt import numpy as np # 加载A和B图像 image_A = cv2.imread('path_to_image_A') image_B = cv2.imread('path_to_image_B') # 对A进行超像素分割 segments_A = slic(img_as_float(image_A), n_segments=100, sigma=5) # 显示A的超像素分割图像 fig = plt.figure('Superpixels_A') ax = fig.add_subplot(1, 1, 1) ax.imshow(mark_boundaries(img_as_float(cv2.cvtColor(image_A, cv2.COLOR_BGR2RGB)), segments_A)) plt.axis("off") plt.show() # 记录A的超像素块范围 masks_A = [] for (i, segVal) in enumerate(np.unique(segments_A)): mask = np.zeros(image_A.shape[:2], dtype="uint8") mask[segments_A == segVal] = 255 masks_A.append(mask) # 根据A的超像素分割信息对B进行超像素分割 rect = (0, 0, image_B.shape[1], image_B.shape[0]) bgdModel = np.zeros((1, 65), np.float64) fgdModel = np.zeros((1, 65), np.float64) mask = np.zeros(image_B.shape[:2], dtype="uint8") for mask_A in masks_A: # 将A的超像素块范围转换为矩形框 rect_A = cv2.boundingRect(mask_A) # 根据A的超像素块范围对B进行grabCut算法 mask_temp = np.zeros(image_B.shape[:2], dtype="uint8") mask_temp[rect_A[1]:rect_A[1]+rect_A[3], rect_A[0]:rect_A[0]+rect_A[2]] = mask_A mask, bgdModel, fgdModel = cv2.grabCut(image_B, mask, rect, bgdModel, fgdModel, 5, cv2.GC_INIT_WITH_MASK) # 显示B的超像素分割图像 fig = plt.figure('Superpixels_B') ax = fig.add_subplot(1, 1, 1) ax.imshow(mark_boundaries(img_as_float(cv2.cvtColor(image_B, cv2.COLOR_BGR2RGB)), mask)) plt.axis("off") plt.show() ``` 请注意,这只是一个伪代码,需要根据具体的图像进行调整和优化。

skimage.segmentation 的mark_boundaries怎么用

`mark_boundaries` 是 `skimage.segmentation` 中的一个函数,用于在图像的边界处绘制轮廓线。它可以接受两个参数,第一个参数是原始图像,第二个参数是对应的标签图像,它们的形状应该相同。标签图像中每个像素的值表示原始图像中对应像素所属的区域编号。 下面是一个使用 `mark_boundaries` 函数的例子: ```python from skimage.segmentation import mark_boundaries from skimage.io import imread # 读入一张图像 img = imread('image.jpg') # 对图像进行分割并得到标签图像 labels = segmentation.slic(img, n_segments=100, compactness=10) # 在图像边界处绘制轮廓线 boundaries = mark_boundaries(img, labels, color=(1, 0, 0)) # 将结果显示出来 plt.imshow(boundaries) plt.show() ``` 在这个例子中,我们首先读入一张图像,并使用 SLIC 算法对其进行分割,得到标签图像。然后,使用 `mark_boundaries` 函数在图像边界处绘制轮廓线,并将结果显示出来。 需要注意的是,`mark_boundaries` 函数默认使用黑色绘制轮廓线,如果需要使用其他颜色,可以通过 `color` 参数指定。在这个例子中,我们将轮廓线的颜色设置为红色。

相关推荐

import cv2 import numpy as np import torch import torch.nn.functional as F from skimage.segmentation import slic import matplotlib.pyplot as plt from skimage.segmentation import mark_boundaries from skimage import img_as_float # 定义超像素数量 num_segments = 100 # 加载图像 A 和 B img_a = cv2.imread('img_a.jpg') img_b = cv2.imread('img_b.jpg') # 对图像 A 进行超像素分割,并获取每个超像素块的像素范围 segments_a = slic(img_as_float(img_a), n_segments=num_segments, sigma=5) pixel_ranges = [] for i in range(num_segments): mask = (segments_a == i) indices = np.where(mask)[1] pixel_range = (np.min(indices), np.max(indices)) pixel_ranges.append(pixel_range) # 将像素范围应用到图像 B 上实现超像素分割 segments_b = np.zeros_like(segments_a) for i in range(num_segments): pixel_range = pixel_ranges[i] segment_b = img_b[:, pixel_range[0]:pixel_range[1], :] segment_b = torch.from_numpy(segment_b.transpose(2, 0, 1)).unsqueeze(0).float() segment_b = F.interpolate(segment_b, size=(img_b.shape[0], pixel_range[1] - pixel_range[0]), mode='bilinear', align_corners=True) segment_b = segment_b.squeeze(0).numpy().transpose(1, 2, 0).astype(np.uint8) gray = cv2.cvtColor(segment_b, cv2.COLOR_BGR2GRAY) _, mask = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY) segments_b[np.where(mask)] = i # 可视化超像素分割结果 fig = plt.figure('Superpixels') ax = fig.add_subplot(1, 2, 1) ax.imshow(mark_boundaries(img_as_float(cv2.cvtColor(img_a, cv2.COLOR_BGR2RGB)), segments_a)) ax = fig.add_subplot(1, 2, 2) ax.imshow(mark_boundaries(img_as_float(cv2.cvtColor(img_b, cv2.COLOR_BGR2RGB)), segments_b)) plt.axis("off") plt.show(),上述代码中segments_a = slic(img_as_float(img_a), n_segments=num_segments, sigma=5)出现错误:ValueError: Cannot convert from object to float64.

import torch import torchvision.transforms as transforms import numpy as np from skimage.segmentation import slic from skimage.segmentation import mark_boundaries from skimage.filters import sobel from skimage.color import rgb2gray from PIL import Image # 超像素数量 num_segments = 100 # 加载图像 image = Image.open('test.jpg') # 转换为 PyTorch 张量 transform = transforms.ToTensor() img_tensor = transform(image).unsqueeze(0) # 转换为 Numpy 数组 img_np = img_tensor.numpy().transpose(0, 2, 3, 1)[0] # 转换为灰度图像 gray_img = rgb2gray(img_np) # 使用 SLIC 超像素分割算法 segments = slic(img_np, n_segments=num_segments, compactness=10, sigma=1) # 绘制超像素边界线 edge_img = mark_boundaries(img_np, segments) # 转换为灰度图像 gray_edge_img = rgb2gray(edge_img) # 使用 Canny 边缘检测算法 edges = sobel(gray_edge_img) edge_map = edges > np.mean(edges) # 绘制超像素范围的线 line_map = np.zeros_like(gray_img) for i in range(num_segments): line_map[segments == i] = edge_map[segments == i].max() # 将线绘制到图像上 line_img = np.zeros_like(img_np) line_img[:, :, 0] = line_map line_img[:, :, 1] = line_map line_img[:, :, 2] = line_map result_img = img_np * (1 - line_img) + line_img * np.array([1, 0, 0]) # 显示结果 result_img = (result_img * 255).astype(np.uint8) result_img = Image.fromarray(result_img) result_img.show()上述代码出现问题:alueError: zero-size array to reduction operation maximum which has no identity

最新推荐

recommend-type

scrapy练习 获取喜欢的书籍

主要是根据网上大神做的 项目一 https://zhuanlan.zhihu.com/p/687522335
recommend-type

基于PyTorch的Embedding和LSTM的自动写诗实验.zip

基于PyTorch的Embedding和LSTM的自动写诗实验LSTM (Long Short-Term Memory) 是一种特殊的循环神经网络(RNN)架构,用于处理具有长期依赖关系的序列数据。传统的RNN在处理长序列时往往会遇到梯度消失或梯度爆炸的问题,导致无法有效地捕捉长期依赖。LSTM通过引入门控机制(Gating Mechanism)和记忆单元(Memory Cell)来克服这些问题。 以下是LSTM的基本结构和主要组件: 记忆单元(Memory Cell):记忆单元是LSTM的核心,用于存储长期信息。它像一个传送带一样,在整个链上运行,只有一些小的线性交互。信息很容易地在其上保持不变。 输入门(Input Gate):输入门决定了哪些新的信息会被加入到记忆单元中。它由当前时刻的输入和上一时刻的隐藏状态共同决定。 遗忘门(Forget Gate):遗忘门决定了哪些信息会从记忆单元中被丢弃或遗忘。它也由当前时刻的输入和上一时刻的隐藏状态共同决定。 输出门(Output Gate):输出门决定了哪些信息会从记忆单元中输出到当前时刻的隐藏状态中。同样地,它也由当前时刻的输入和上一时刻的隐藏状态共同决定。 LSTM的计算过程可以大致描述为: 通过遗忘门决定从记忆单元中丢弃哪些信息。 通过输入门决定哪些新的信息会被加入到记忆单元中。 更新记忆单元的状态。 通过输出门决定哪些信息会从记忆单元中输出到当前时刻的隐藏状态中。 由于LSTM能够有效地处理长期依赖关系,它在许多序列建模任务中都取得了很好的效果,如语音识别、文本生成、机器翻译、时序预测等。
recommend-type

基于Java的云计算平台设计源码

云计算平台设计源码:该项目基于Java开发,包含126个文件,主要使用Java、JavaScript、HTML和CSS语言。该项目是一个云计算平台,旨在为用户提供一个高效、灵活的云计算服务,包括资源管理、虚拟化技术、分布式存储等功能,以满足不同用户的计算和存储需求。
recommend-type

grpcio-1.41.0-cp38-cp38-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

grpcio-1.44.0-cp310-cp310-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。