from skimage.segmentation import slic from skimage.segmentation import mark_boundaries from skimage.util import img_as_float import matplotlib.pyplot as plt import numpy as np import cv2 # args args = {"image": 'I:\\18Breakageratecalculation\\SVM run\\images\\001.jpg'} # load the image and apply SLIC and extract (approximately) # the supplied number of segments image = cv2.imread(args["image"]) segments = slic(img_as_float(image), n_segments=100, sigma=5) # show the output of SLIC fig = plt.figure('Superpixels') ax = fig.add_subplot(1, 1, 1) ax.imshow(mark_boundaries(img_as_float(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)), segments)) plt.axis("off") plt.show() print("segments:\n", segments) print("np.unique(segments):", np.unique(segments)) # loop over the unique segment values for (i, segVal) in enumerate(np.unique(segments)): # construct a mask for the segment print("[x] inspecting segment {}, for {}".format(i, segVal)) mask = np.zeros(image.shape[:2], dtype="uint8") mask[segments == segVal] = 255 # show the masked region cv2.imshow("Mask", mask) cv2.imshow("Applied", np.multiply(image, cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) > 0)) cv2.waitKey(0)怎么保存超像素块
时间: 2024-02-25 10:56:44 浏览: 177
要保存超像素块,你可以在循环中将每个超像素块保存为一个单独的图像文件。例如,你可以在循环内部使用以下代码将每个超像素块保存为一个单独的文件:
```python
cv2.imwrite("segment_%d.png" % i, np.multiply(image, cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) > 0))
```
这将使用当前循环索引 i 作为文件名的一部分,将每个超像素块保存为一个名为 "segment_i.png" 的文件。
相关问题
有两张大小相同的图像A和B,利用代码:from skimage.segmentation import slic from skimage.segmentation import mark_boundaries from skimage.util import img_as_float import matplotlib.pyplot as plt import numpy as np import cv2 # args args = {"image": './1.png'} # load the image and apply SLIC and extract (approximately) # the supplied number of segments image = cv2.imread(args["image"]) segments = slic(img_as_float(image), n_segments=100, sigma=5) # show the output of SLIC fig = plt.figure('Superpixels') ax = fig.add_subplot(1, 1, 1) ax.imshow(mark_boundaries(img_as_float(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)), segments)) plt.axis("off") plt.show() print("segments:\n", segments) print("np.unique(segments):", np.unique(segments)) # loop over the unique segment values for (i, segVal) in enumerate(np.unique(segments)): # construct a mask for the segment print("[x] inspecting segment {}, for {}".format(i, segVal)) mask = np.zeros(image.shape[:2], dtype="uint8") mask[segments == segVal] = 255 print(mask.shape) # show the masked region cv2.imshow("Mask", mask) cv2.imshow("Applied", np.multiply(image, cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) > 0)) cv2.waitKey(0),对A进行超像素分割,将A划分的每个超像素块范围进行记录,应用到B上,使B直接得到超像素图像。给出pytorch实现代码
以下是使用PyTorch实现将图像B应用超像素图像A的代码:
```python
import torch
import numpy as np
import cv2
import matplotlib.pyplot as plt
from skimage.segmentation import slic, mark_boundaries
from skimage.util import img_as_float
# Load the images
image_a_path = './image_a.png'
image_b_path = './image_b.png'
image_a = cv2.imread(image_a_path)
image_b = cv2.imread(image_b_path)
# Generate superpixels for image A
segments_a = slic(img_as_float(image_a), n_segments=100, sigma=5)
# Loop over the unique segment values for image A
for seg_val in np.unique(segments_a):
# Construct a mask for the segment
mask = np.zeros(image_a.shape[:2], dtype="uint8")
mask[segments_a == seg_val] = 255
# Apply the mask to image B
masked_image_b = np.multiply(image_b, cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) > 0)
# Convert the masked image to a PyTorch tensor
tensor_image = torch.from_numpy(masked_image_b.astype(np.float32)).permute(2, 0, 1) / 255.0
# TODO: Apply your PyTorch model to the tensor_image
# Convert the output tensor to a masked image
output_image = tensor_image.permute(1, 2, 0).numpy() * 255.0
output_image = output_image.astype(np.uint8)
output_image = np.multiply(output_image, cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) > 0)
# Show the output image
fig = plt.figure('Output')
ax = fig.add_subplot(1, 1, 1)
ax.imshow(output_image)
plt.axis("off")
plt.show()
```
在上面的代码中,我们首先加载了图像A和图像B。然后,我们使用skimage.segmentation中的slic函数生成图像A的超像素图像。对于每个超像素块,我们构造一个掩膜并将其应用到图像B上。然后,我们将掩膜后的图像转换为PyTorch张量,并将其输入到您的PyTorch模型中。最后,我们将输出张量转换回图像格式,并将其与掩膜相乘以获得最终输出图像。
from skimage.segmentation import slic, mark_boundaries import torchvision.transforms as transforms import numpy as np from PIL import Image import matplotlib.pyplot as plt # 加载图像 image = Image.open('3.jpg') # 转换为 PyTorch 张量 transform = transforms.ToTensor() img_tensor = transform(image).unsqueeze(0) # 将 PyTorch 张量转换为 Numpy 数组 img_np = img_tensor.numpy().transpose(0, 2, 3, 1)[0] # 使用 SLIC 算法生成超像素标记图 segments = slic(img_np, n_segments=60, compactness=10) # 可视化超像素索引映射 plt.imshow(segments, cmap='gray') plt.show() # 将超像素索引映射可视化 segment_img = mark_boundaries(img_np, segments) # 将 Numpy 数组转换为 PIL 图像 segment_img = Image.fromarray((segment_img * 255).astype(np.uint8)) # 保存超像素索引映射可视化 segment_img.save('segment_map.jpg'),将上述代码进行超像素池化处理,并输出可视化超像素特征图、
好的,让我来帮你解答这个问题。首先,超像素池化是一种基于超像素的图像池化方法,它可以将超像素内的像素特征进行聚合,从而减少特征的维度,提高计算效率。下面是对上述代码进行超像素池化处理的示例代码:
```
import torch
import torch.nn.functional as F
# 定义超像素池化函数
def superpixel_pooling(feature_map, segments):
# 获取超像素数量和特征维度
n_segments = np.unique(segments).size
n_channels = feature_map.shape[0]
# 初始化超像素特征
pooled_features = torch.zeros((n_segments, n_channels))
# 对每个超像素内的像素特征进行聚合
for segment_id in range(n_segments):
mask = (segments == segment_id).reshape(-1, 1, 1)
pooled_feature = (feature_map * mask.float()).sum(dim=(1, 2)) / mask.sum()
pooled_features[segment_id] = pooled_feature
return pooled_features
# 进行超像素池化
pooled_features = superpixel_pooling(img_tensor, segments)
# 可视化超像素特征图
plt.imshow(pooled_features.transpose(0, 1), cmap='gray')
plt.show()
```
这段代码会先定义一个超像素池化函数 `superpixel_pooling`,然后将输入的图像张量 `img_tensor` 和超像素索引映射 `segments` 作为参数传入该函数中进行超像素池化。最后,我们将聚合后的超像素特征可视化出来。
阅读全文