有没有遗传粒子群多目标优化算法代码
时间: 2023-06-13 12:02:52 浏览: 108
代码 多目标粒子群优化算法代码
5星 · 资源好评率100%
遗传粒子群(GPSO)算法是一种组合了遗传算法和粒子群算法的优化算法,可以用于多目标优化问题。以下是一个基于Python的GPSO多目标优化算法的代码示例:
```python
import numpy as np
class GPSO:
def __init__(self, objective_func, num_variables, num_particles, num_objectives, max_iter, w, c1, c2):
self.objective_func = objective_func
self.num_variables = num_variables
self.num_particles = num_particles
self.num_objectives = num_objectives
self.max_iter = max_iter
self.w = w
self.c1 = c1
self.c2 = c2
self.particles = np.random.rand(num_particles, num_variables)
self.velocities = np.zeros((num_particles, num_variables))
self.pbest = self.particles.copy()
self.pbest_scores = np.zeros(num_particles)
self.gbest = np.zeros(num_variables)
self.gbest_scores = np.zeros(num_objectives)
def optimize(self):
for i in range(self.max_iter):
for j in range(self.num_particles):
scores = self.objective_func(self.particles[j])
if i == 0:
self.pbest_scores[j] = scores
if np.all(scores < self.pbest_scores[j]):
self.pbest_scores[j] = scores
self.pbest[j] = self.particles[j].copy()
if np.all(scores < self.gbest_scores):
self.gbest_scores = scores
self.gbest = self.particles[j].copy()
r1 = np.random.rand(self.num_variables)
r2 = np.random.rand(self.num_variables)
self.velocities[j] = (self.w * self.velocities[j] +
self.c1 * r1 * (self.pbest[j] - self.particles[j]) +
self.c2 * r2 * (self.gbest - self.particles[j]))
self.particles[j] = self.particles[j] + self.velocities[j]
return self.gbest, self.gbest_scores
```
在上述代码中,objective_func是用于计算目标函数值的函数,num_variables是变量的数量,num_particles是粒子的数量,num_objectives是目标函数的数量,max_iter是迭代次数,w、c1和c2是算法的超参数,分别表示惯性权重、个体和全局学习因子。在optimize函数中,算法使用了标准的GPSO算法流程,包括初始化粒子、计算粒子适应值、更新粒子速度和位置等步骤。最终,算法返回全局最优解和对应的目标函数值。
阅读全文