请根据cotraining算法自行编写代码,并对代码进行逐行注释,实现半监督学习数字识别任务,并说明cotraining算法具体思想
时间: 2024-02-28 17:55:27 浏览: 54
好的,下面是代码实现和注释。
首先,我们需要导入所需的库和模块:
```python
import numpy as np
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.svm import SVC
from sklearn.naive_bayes import GaussianNB
```
然后,我们需要加载手写数字数据集,并将其分成训练集和测试集:
```python
digits = load_digits()
# 将数据集划分为有标注数据和无标注数据
X_unlabeled, X_labeled, y_unlabeled, y_labeled = train_test_split(digits.data, digits.target, test_size=0.9, stratify=digits.target, random_state=42)
# 将有标注数据划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X_labeled, y_labeled, test_size=0.5, stratify=y_labeled, random_state=42)
```
接下来,我们需要定义两个分类器,这里我们采用SVM和朴素贝叶斯分类器:
```python
clf1 = SVC(kernel='linear', random_state=42) # 定义一个SVM分类器
clf2 = GaussianNB() # 定义一个朴素贝叶斯分类器
```
然后,我们需要定义cotraining算法的实现代码:
```python
def cotraining(X_train, y_train, X_unlabeled, clf1, clf2, n_iter=5, r=0.5, u=10):
"""
半监督学习之cotraining算法的实现
参数:
X_train: array-like,有标注数据的特征,shape为(n_samples, n_features)
y_train: array-like,有标注数据的标签,shape为(n_samples, )
X_unlabeled: array-like,无标注数据的特征,shape为(n_samples, n_features)
clf1: 模型1,例如SVM分类器
clf2: 模型2,例如朴素贝叶斯分类器
n_iter: int,cotraining算法的迭代次数,默认为5
r: float,每次迭代中选择高置信度样本的比例,默认为0.5
u: int,每次迭代中从剩余无标注数据中选择的样本数,默认为10
返回值:
clf1: 模型1,训练之后的分类器
clf2: 模型2,训练之后的分类器
"""
X_labeled = X_train.copy() # 将有标注数据复制到X_labeled
y_labeled = y_train.copy() # 将有标注数据的标签复制到y_labeled
for i in range(n_iter):
# Train classifiers on labeled data
clf1.fit(X_labeled, y_labeled) # 在有标注数据上训练模型1
clf2.fit(X_labeled, y_labeled) # 在有标注数据上训练模型2
# Use classifiers to predict labels for unlabeled data
y_pred1 = clf1.predict(X_unlabeled) # 利用模型1预测无标注数据的标签
y_pred2 = clf2.predict(X_unlabeled) # 利用模型2预测无标注数据的标签
# Select high-confidence predictions
p1 = clf1.decision_function(X_unlabeled) # 计算模型1的置信度分数
p2 = clf2.predict_proba(X_unlabeled) # 计算模型2的置信度概率
high_confidence1 = np.argsort(-p1)[:int(r * len(X_unlabeled))] # 选取置信度分数最高的r%样本
high_confidence2 = np.argsort(-p2.max(axis=1))[:int(r * len(X_unlabeled))] # 选取置信度概率最高的r%样本
high_confidence = set(high_confidence1).intersection(high_confidence2) # 选择两个模型都选中的样本
# Add high-confidence predictions to labeled data
X_labeled = np.concatenate([X_labeled, X_unlabeled[list(high_confidence)]]) # 将高置信度样本添加到有标注数据中
y_labeled = np.concatenate([y_labeled, y_pred1[list(high_confidence)]]) # 将高置信度样本的标签添加到有标注数据标签中
# Remove high-confidence predictions from unlabeled data
X_unlabeled = np.delete(X_unlabeled, list(high_confidence), axis=0) # 从无标注数据中删除高置信度样本
# Select random samples from remaining unlabeled data
random_samples = np.random.choice(len(X_unlabeled), size=u, replace=False) # 随机选择u个样本
# Add random samples to labeled data
X_labeled = np.concatenate([X_labeled, X_unlabeled[random_samples]]) # 将随机选择的样本添加到有标注数据中
y_labeled = np.concatenate([y_labeled, y_pred2[random_samples]]) # 将随机选择的样本的标签添加到有标注数据标签中
# Remove random samples from unlabeled data
X_unlabeled = np.delete(X_unlabeled, random_samples, axis=0) # 从无标注数据中删除随机选择的样本
# Train final classifiers on all labeled data
clf1.fit(X_labeled, y_labeled) # 在所有有标注数据上训练模型1
clf2.fit(X_labeled, y_labeled) # 在所有有标注数据上训练模型2
return clf1, clf2
```
最后,我们需要调用cotraining函数来训练分类器,并用测试集评估分类器的性能:
```python
clf1, clf2 = cotraining(X_train, y_train, X_unlabeled, clf1, clf2)
y_pred1 = clf1.predict(X_test)
y_pred2 = clf2.predict(X_test)
print("SVM Accuracy:", accuracy_score(y_test, y_pred1))
print("Naive Bayes Accuracy:", accuracy_score(y_test, y_pred2))
```
cotraining算法的思想是利用两个不同的模型对数据进行预测,选取其中置信度较高的部分作为有标注数据加入到训练数据中,然后从未标注数据中选择一部分数据作为新的训练数据,不断重复这个过程,直到模型收敛或者达到预设的迭代次数。这个过程中,两个模型相互利用,互相补充信息,从而提高模型的泛化能力和性能。
阅读全文