基于tensorflow搭建densenet
时间: 2024-02-01 12:03:13 浏览: 121
tensorflow-densenet-resnet-inception网络
5星 · 资源好评率100%
DenseNet是一种非常有效的卷积神经网络架构,它具有非常高的参数利用率和良好的训练性能。在这里,我们将使用TensorFlow来构建一个DenseNet。
首先,我们需要导入所需的库:
```python
import tensorflow as tf
from tensorflow.keras.layers import Dense, Conv2D, BatchNormalization, Activation, Concatenate, AvgPool2D, Flatten
```
接下来,我们可以定义DenseNet的各个组件。我们将使用DenseBlock和TransitionBlock两种类型的块来构建DenseNet。DenseBlock将由若干个卷积层组成,每个卷积层都会接受前面所有卷积层的输出作为输入,并将它们连接在一起。TransitionBlock用于将特征图的尺寸减半,并减少通道数,以便在下一层中使用更少的内存和计算资源。
```python
class DenseBlock(tf.keras.layers.Layer):
def __init__(self, num_layers, growth_rate):
super(DenseBlock, self).__init__()
self.num_layers = num_layers
self.growth_rate = growth_rate
def build(self, input_shape):
self.conv_layers = []
for i in range(self.num_layers):
self.conv_layers.append(Conv2D(filters=self.growth_rate, kernel_size=(3, 3), padding='same'))
self.batch_norm = BatchNormalization()
def call(self, inputs):
x = inputs
for i in range(self.num_layers):
y = self.conv_layers[i](x)
x = Concatenate()([x, y])
x = self.batch_norm(x)
return x
class TransitionBlock(tf.keras.layers.Layer):
def __init__(self, num_output_channels):
super(TransitionBlock, self).__init__()
self.num_output_channels = num_output_channels
def build(self, input_shape):
self.conv_layer = Conv2D(filters=self.num_output_channels, kernel_size=(1, 1), padding='same')
self.avg_pool = AvgPool2D(pool_size=(2, 2), strides=(2, 2))
self.batch_norm = BatchNormalization()
def call(self, inputs):
x = self.conv_layer(inputs)
x = self.avg_pool(x)
x = self.batch_norm(x)
return x
```
现在我们可以定义整个DenseNet模型了。我们将使用Sequential模型,并在其中添加DenseBlock和TransitionBlock。我们还将添加一些最终的卷积层和全连接层来生成输出。
```python
def make_densenet(input_shape, num_classes, num_blocks=3, growth_rate=12, num_filters=16):
model = tf.keras.Sequential()
# initial convolution layer
model.add(Conv2D(filters=num_filters, kernel_size=(7, 7), strides=(2, 2), padding='same', input_shape=input_shape))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(MaxPool2D(pool_size=(3, 3), strides=(2, 2), padding='same'))
# dense blocks and transition blocks
for i in range(num_blocks):
model.add(DenseBlock(num_layers=4, growth_rate=growth_rate))
num_filters += 4 * growth_rate
if i != num_blocks - 1:
model.add(TransitionBlock(num_filters // 2))
num_filters = num_filters // 2
# final layers
model.add(Flatten())
model.add(Dense(units=num_classes, activation='softmax'))
return model
```
现在我们可以使用上面的代码来创建一个DenseNet模型。以下是一个示例:
```python
input_shape = (224, 224, 3)
num_classes = 10
model = make_densenet(input_shape=input_shape, num_classes=num_classes)
model.summary()
```
这将创建一个具有10个类的DenseNet模型,并打印出模型的摘要。现在你可以根据需要调整模型的参数或添加其他层。
阅读全文