yolov8 数据导入 代码
时间: 2024-04-16 19:23:26 浏览: 174
YOLOv8是一种目标检测算法,它是YOLO(You Only Look Once)系列的最新版本。下面是一个简单的示例代码,用于演示如何导入数据并使用YOLOv8进行目标检测:
```python
import cv2
import numpy as np
# 导入YOLOv8模型和权重
net = cv2.dnn.readNetFromDarknet('yolov3.cfg', 'yolov3.weights')
# 获取模型输出层的名称
layer_names = net.getLayerNames()
output_layers = [layer_names[i - 1] for i in net.getUnconnectedOutLayers()]
# 加载类别标签
classes = []
with open('coco.names', 'r') as f:
classes = [line.strip() for line in f.readlines()]
# 加载图像
image = cv2.imread('image.jpg')
height, width, channels = image.shape
# 对图像进行预处理
blob = cv2.dnn.blobFromImage(image, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
net.setInput(blob)
# 运行前向传播
outs = net.forward(output_layers)
# 解析模型输出并绘制边界框
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
center_x = int(detection[0] * width)
center_y = int(detection * height)
w = int(detection * width)
h = int(detection * height)
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
# 使用非最大抑制方法去除重叠边界框
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
# 在图像上绘制边界框和类别标签
font = cv2.FONT_HERSHEY_SIMPLEX
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
confidence = confidences[i]
color = (0, 255, 0)
cv2.rectangle(image, (x, y), (x + w, y + h), color, 2)
cv2.putText(image, label + ' ' + str(round(confidence, 2)), (x, y - 10), font, 0.5, color, 2)
# 显示结果图像
cv2.imshow("Image", image)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
这段代码使用OpenCV库来导入YOLOv8模型和权重,并使用模型进行目标检测。你需要将YOLOv8的配置文件(yolov3.cfg)、权重文件(yolov3.weights)和类别标签文件(coco.names)放在同一目录下,并将待检测的图像命名为image.jpg。代码会在图像上绘制检测到的边界框和类别标签,并显示结果图像。
阅读全文