遗传算法最短路径matlab代码
时间: 2023-09-08 20:14:31 浏览: 94
下面是一个简单的遗传算法最短路径的 MATLAB 代码示例:
```matlab
% 遗传算法最短路径示例
% 假设有一个5个城市的旅行商问题
% 假设城市坐标矩阵为cities,其中每一行表示一个城市的坐标
cities = [0.5, 1.5; 1, 2; 1.5, 1; 2, 0.5; 1, 1];
% 城市数量
nCities = size(cities, 1);
% 种群数量
nPop = 50;
% 迭代次数
nIter = 100;
% 交叉概率
pCrossover = 0.8;
% 变异概率
pMutation = 0.05;
% 初始化种群
pop = zeros(nPop, nCities);
for i = 1:nPop
pop(i, :) = randperm(nCities);
end
% 迭代
for iter = 1:nIter
% 评估种群中每个个体的适应度
fitness = zeros(nPop, 1);
for i = 1:nPop
fitness(i) = getPathLength(cities, pop(i, :));
end
% 选择
selectedPop = zeros(nPop, nCities);
for i = 1:nPop
% 轮盘赌选择
idx1 = rouletteWheelSelection(fitness);
idx2 = rouletteWheelSelection(fitness);
% 选择两个不同的个体
while idx2 == idx1
idx2 = rouletteWheelSelection(fitness);
end
% 交叉
if rand() < pCrossover
[child1, child2] = crossover(pop(idx1, :), pop(idx2, :));
selectedPop(i, :) = child1;
% 有一定概率发生变异
if rand() < pMutation
selectedPop(i, :) = mutate(selectedPop(i, :));
end
i = i + 1;
selectedPop(i, :) = child2;
if rand() < pMutation
selectedPop(i, :) = mutate(selectedPop(i, :));
end
else
selectedPop(i, :) = pop(idx1, :);
end
end
% 替换原种群
pop = selectedPop;
end
% 找到最优解
minPath = inf;
for i = 1:nPop
pathLength = getPathLength(cities, pop(i, :));
if pathLength < minPath
minPath = pathLength;
bestPath = pop(i, :);
end
end
% 输出结果
fprintf('最短路径长度: %f\n', minPath);
fprintf('最短路径: %s\n', mat2str(bestPath));
```
其中,`getPathLength` 函数计算路径长度,`rouletteWheelSelection` 函数进行轮盘赌选择,`crossover` 函数进行交叉操作,`mutate` 函数进行变异操作。这些函数可以根据具体需要进行编写。
阅读全文