train_data = np.asarray(np.zeros((k, 0))) train_label = np.mat(np.zeros((1, 0), int))
时间: 2023-11-16 10:07:21 浏览: 130
These lines of code initialize two variables, `train_data` and `train_label`, with zero values.
`train_data` is a NumPy array with `k` rows and 0 columns. This means that it is an empty array with `k` rows that will eventually be filled with training data.
`train_label` is a NumPy matrix with 1 row and 0 columns, initialized with integer values of zero. This means that it is an empty matrix with one row that will eventually be filled with training labels.
These variables are likely part of a larger machine learning algorithm that requires training data and labels to be initialized before they are collected from a dataset.
相关问题
def data_preprocess(): # 将给定的训练和测试集读入,并转换成预定格式的张量 path_train = 'trainsamples5.mat' path_test = 'testsamples5.mat' data_train_dic = scio.loadmat(path_train) data_test_dic = scio.loadmat(path_test) data_train = data_train_dic['trainsamples5'] data_test = data_test_dic['testsamples5'] data_train = data_train.reshape(-1, 150) data_test = data_test.reshape(-1, 150) data_train = torch.from_numpy(data_train) data_test = torch.from_numpy(data_test) data_train_pre = data_train.unsqueeze(dim=1) data_test_pre = data_test.unsqueeze(dim=1) zeros = np.zeros((50, 1)) ones = np.ones((50, 1)) label = np.concatenate((zeros, ones, ones * 2, ones * 3, ones * 4), axis=0) # get label label = torch.from_numpy(label) label_pre = label.view(-1).long() return data_train_pre, data_test_pre, label_pre
这段代码是用来做机器学习中的数据预处理的,主要是将给定的训练和测试集读入并转换成预定格式的张量。其中,使用了scio.loadmat函数读入.mat类型的数据,然后使用numpy将数据reshape成(-1, 150)的形状,接着将numpy数组转换成PyTorch的张量。最后,使用torch.from_numpy将numpy数组转换成张量,使用torch.unsqueeze在第二维插入一个维度,使得数据维度变成了(batch_size, 1, 150)的形状。同时,还生成了标签数据label,并将其转换成了PyTorch的张量,最后使用label.view(-1).long()将label的形状变成了(batch_size,)的形状。
这段代码的详细意思是什么def data_preprocess(): # 将给定的训练和测试集读入,并转换成预定格式的张量 path_train = 'trainsamples5.mat' path_test = 'testsamples5.mat' data_train_dic = scio.loadmat(path_train) data_test_dic = scio.loadmat(path_test) data_train = data_train_dic['trainsamples5'] data_test = data_test_dic['testsamples5'] data_train = data_train.reshape(-1, 150) data_test = data_test.reshape(-1, 150) data_train = torch.from_numpy(data_train) #使用torch.from_numpy将numpy数组转换成张量 data_test = torch.from_numpy(data_test) data_train_pre = data_train.unsqueeze(dim=1) #使用torch.unsqueeze在第二维插入一个维度,使得数据维度变成了(batch_size, 1, 150)的形状 data_test_pre = data_test.unsqueeze(dim=1) zeros = np.zeros((50, 1)) ones = np.ones((50, 1)) label = np.concatenate((zeros, ones, ones * 2, ones * 3, ones * 4), axis=0) # get label label = torch.from_numpy(label) label_pre = label.view(-1).long() return data_train_pre, data_test_pre, label_pre
这段代码的作用是对给定的训练和测试数据进行预处理,转换成PyTorch框架中所需的张量格式。具体步骤如下:
1. 读取训练和测试数据的.mat文件。
2. 将读取的数据存储在numpy数组中。
3. 使用torch.from_numpy将numpy数组转换成张量。
4. 使用torch.unsqueeze在第二维插入一个维度,使得数据维度变成了(batch_size, 1, 150)的形状。
5. 构造label标签数据,具体为50个0,50个1,50个2,50个3和50个4,然后使用numpy中的concatenate函数将它们按照第0维度进行拼接,得到形状为(250, 1)的标签数组。
6. 使用torch.from_numpy将标签数组转换成张量。
7. 使用torch.view对标签张量进行形状的变换,使得标签变成了一维的长向量。
8. 将处理后的训练数据、测试数据和标签返回。
阅读全文