lr_coef=pd.DataFrame(lr_fit.coef_,columns=lr_fit.feature_names_in_.tolist(),index=['coef']) #feature_names_in_拟合过程中使用到的特征名称 AttributeError: 'LinearRegression' object has no attribute 'feature_names_in_'
时间: 2024-02-13 16:02:03 浏览: 217
LR_coef.zip_lr.coef_\_python_python特征选择_特征选择_逻辑回归 coef
这个错误提示是因为 LinearRegression 没有 feature_names_in_ 这个属性。如果你想要获取特征的名称,需要在拟合模型的时候保存下来。
假设你在拟合模型的时候使用的是一个 DataFrame,那么你可以通过 columns 属性来获取特征的名称。例如:
```
import pandas as pd
from sklearn.linear_model import LinearRegression
# 创建一个 DataFrame,包含 X 和 y
X = pd.DataFrame({'x1': [1, 2, 3], 'x2': [4, 5, 6]})
y = pd.Series([1, 2, 3])
# 拟合线性回归模型
lr_fit = LinearRegression().fit(X, y)
# 获取特征的系数和名称
lr_coef = pd.DataFrame(lr_fit.coef_, columns=X.columns, index=['coef'])
```
在这个例子中,我们首先创建一个包含 X 和 y 的 DataFrame。然后,我们使用 LinearRegression.fit() 方法来拟合线性回归模型。最后,我们使用 lr_fit.coef_ 和 X.columns 来获取特征的系数和名称,并创建一个 DataFrame 来保存这些信息。注意,这里的 columns 属性是 DataFrame 的一个属性,用来获取列名。
阅读全文