cannot import name 'gini_impurity' from 'sklearn.metrics' 怎么修改
时间: 2024-11-25 18:03:21 浏览: 32
遇到 `ImportError: cannot import name 'gini_impurity' from 'sklearn.metrics'` 这样的错误通常是因为尝试导入的模块(在这个例子中是 `gini_impurity`)在当前版本的scikit-learn中已不再存在或者名称有所改变。
解决这个问题的方法是更新到scikit-learn的最新版本,或者查阅文档确认正确的模块和函数名。`gini_impurity`可能已经被替换为`sklearn.metrics.gini`。如果你仍然想使用`explained_variance_score`,你可以按照以下步骤操作[^1]:
1. 验证版本:
```python
from sklearn import __version__ as sklearn_version
print(f"Sklearn version: {sklearn_version}")
```
2. 如果需要`explained_variance_score`,直接导入并使用它:
```python
from sklearn.metrics import explained_variance_score
actual = ... # Your actual values
predicted = ... # Your predicted values
eva = explained_variance_score(actual, predicted)
print("Explained Variance Score:", eva)
```
如果需要使用其他功能,如特征重要性评估,可以考虑使用`SelectKBest`与`f_regression`结合[^2]:
```python
from sklearn.pipeline import Pipeline
from sklearn.feature_selection import SelectKBest
from sklearn.linear_model import LinearRegression
# ...
pipe = Pipeline([
('feature_selection', SelectKBest(score_func=f_regression)),
('regression', LinearRegression())
])
# Fit and evaluate the pipeline
X_train, X_test, y_train, y_test = ...
pipe.fit(X_train, y_train)
y_pred = pipe.predict(X_test)
```
阅读全文