cnn-bilstm-attentionmatlab实现

时间: 2023-09-03 13:12:07 浏览: 271
ZIP

MATLAB实现CNN-BiLSTM-Attention时间序列预测(完整源码和数据)

star5星 · 资源好评率100%
以下是一个简单的 MATLAB 实现,使用了 CNN-BiLSTM-Attention 模型: 1. 加载数据集 在这个例子中,我们将使用一个简单的情感分析数据集。首先,我们需要加载数据集并将其分成训练集和测试集。 ```matlab % 加载数据集 load('sentiment_dataset.mat'); % 将数据集分成训练集和测试集 XTrain = reviews(1:8000); YTrain = labels(1:8000); XTest = reviews(8001:end); YTest = labels(8001:end); ``` 2. 数据预处理 我们需要对文本进行预处理,包括分词、去除停用词、将文本转换为数字等。 ```matlab % 分词 XTrain = lower(tokenizedDocument(XTrain)); XTest = lower(tokenizedDocument(XTest)); % 去除停用词 stopWords = stopwords('english'); XTrain = removeWords(XTrain, stopWords); XTest = removeWords(XTest, stopWords); % 将文本转换为数字 numWords = 10000; words = unique([XTrain; XTest]); [wordCounts, idx] = sort(sum(ismember(words, [XTrain; XTest])), 'descend'); words = words(idx(1:numWords)); XTrain = doc2sequence(XTrain, 'Words', words); XTest = doc2sequence(XTest, 'Words', words); ``` 3. 创建 CNN 层 我们将使用一个具有多个卷积层和池化层的 CNN。每个卷积层都有一个 ReLU 激活函数和一个最大池化层。我们还将使用批量归一化来加速训练。 ```matlab % 创建 CNN 层 inputSize = numWords; embeddingSize = 100; numFilters = 128; filterSizes = [3 4 5]; dropoutRate = 0.5; input = sequenceInputLayer(inputSize); embedding = wordEmbeddingLayer(words, embeddingSize); conv1 = convolution2dLayer([filterSizes(1) embeddingSize], numFilters, 'Padding', 1); conv2 = convolution2dLayer([filterSizes(2) embeddingSize], numFilters, 'Padding', 1); conv3 = convolution2dLayer([filterSizes(3) embeddingSize], numFilters, 'Padding', 1); relu1 = reluLayer(); relu2 = reluLayer(); relu3 = reluLayer(); pool1 = maxPooling2dLayer([filterSizes(1) 1], 'Stride', [2 1]); pool2 = maxPooling2dLayer([filterSizes(2) 1], 'Stride', [2 1]); pool3 = maxPooling2dLayer([filterSizes(3) 1], 'Stride', [2 1]); batchNorm1 = batchNormalizationLayer(); batchNorm2 = batchNormalizationLayer(); batchNorm3 = batchNormalizationLayer(); dropout = dropoutLayer(dropoutRate); % 连接 CNN 层 sequence = input; sequence = embedding(sequence); sequence = sequenceLength(sequence, 'OutputMode', 'last'); sequence = reshape(sequence, 1, 1, []); sequence = conv1(sequence); sequence = batchNorm1(sequence); sequence = relu1(sequence); sequence = pool1(sequence); sequence = conv2(sequence); sequence = batchNorm2(sequence); sequence = relu2(sequence); sequence = pool2(sequence); sequence = conv3(sequence); sequence = batchNorm3(sequence); sequence = relu3(sequence); sequence = pool3(sequence); sequence = dropout(sequence); ``` 4. 创建 BiLSTM 层 接下来,我们将添加一个双向 LSTM 层。 ```matlab % 创建 BiLSTM 层 hiddenSize = 128; numClasses = 2; lstm = bilstmLayer(hiddenSize, 'OutputMode', 'last'); % 连接 BiLSTM 层 sequence = lstm(sequence); ``` 5. 创建 Attention 层 最后,我们将使用一个注意力层来加权输入序列的不同部分。 ```matlab % 创建 Attention 层 attention = attentionLayer(); % 连接 Attention 层 sequence = attention(sequence); ``` 6. 创建输出层 最后,我们将添加一个全连接层和一个 softmax 层来生成分类输出。 ```matlab % 创建输出层 fc = fullyConnectedLayer(numClasses); softmax = softmaxLayer(); classificationLayer = classificationLayer(); % 连接输出层 sequence = fc(sequence); sequence = softmax(sequence); sequence = classificationLayer(sequence); ``` 7. 训练模型并评估性能 最后,我们将训练模型并评估其在测试集上的性能。 ```matlab % 定义训练选项 options = trainingOptions('adam', ... 'MaxEpochs', 10, ... 'MiniBatchSize', 128, ... 'InitialLearnRate', 0.001, ... 'Shuffle', 'every-epoch', ... 'Verbose', false, ... 'Plots', 'training-progress'); % 训练模型 net = trainNetwork(XTrain, YTrain, sequence, options); % 在测试集上评估模型性能 YPred = classify(net, XTest); accuracy = mean(YPred == YTest); fprintf('Test accuracy: %0.2f%%\n', accuracy * 100); ```
阅读全文

相关推荐

最新推荐

recommend-type

使用keras实现BiLSTM+CNN+CRF文字标记NER

本篇将详细介绍如何使用Keras库构建一个BiLSTM(双向长短时记忆网络)+ CNN(卷积神经网络)+ CRF(条件随机场)的模型来解决NER问题。 首先,我们需要了解各个组件的作用: 1. **BiLSTM**:BiLSTM是LSTM(长短时...
recommend-type

基于java的化妆品配方及工艺管理系统的开题报告.docx

基于java的化妆品配方及工艺管理系统的开题报告.docx
recommend-type

vue chrome 扩展模板.zip

Vue.js Chrome 扩展模板 ( wcer )用于在开发时在 Vuejs c 热重加载上快速创建 Chrome 扩展的模板。安装该样板是作为vue-cli的模板构建的,并包含自定义最终脚手架应用程序的选项。# install vue-cli$ npm install -g vue-cli# create a new project using the template$ vue init YuraDev/vue-chrome-extension-template my-project# install dependencies and go!$ cd my-project$ npm install # or yarn$ npm run dev # or yarn dev结构后端脚本的后台工作内容在网页上下文中运行devtools——它可以添加新的 UI 面板和侧边栏,与检查的页面交互,获取有关网络请求的信息等等。选项- 为了允许用户自定义扩展的行为,您可能希望提供一个选项页面。popup - 单击图标时将显示的页面(窗口)tab -
recommend-type

Angular实现MarcHayek简历展示应用教程

资源摘要信息:"MarcHayek-CV:我的简历的Angular应用" Angular 应用是一个基于Angular框架开发的前端应用程序。Angular是一个由谷歌(Google)维护和开发的开源前端框架,它使用TypeScript作为主要编程语言,并且是单页面应用程序(SPA)的优秀解决方案。该应用不仅展示了Marc Hayek的个人简历,而且还介绍了如何在本地环境中设置和配置该Angular项目。 知识点详细说明: 1. Angular 应用程序设置: - Angular 应用程序通常依赖于Node.js运行环境,因此首先需要全局安装Node.js包管理器npm。 - 在本案例中,通过npm安装了两个开发工具:bower和gulp。bower是一个前端包管理器,用于管理项目依赖,而gulp则是一个自动化构建工具,用于处理如压缩、编译、单元测试等任务。 2. 本地环境安装步骤: - 安装命令`npm install -g bower`和`npm install --global gulp`用来全局安装这两个工具。 - 使用git命令克隆远程仓库到本地服务器。支持使用SSH方式(`***:marc-hayek/MarcHayek-CV.git`)和HTTPS方式(需要替换为具体用户名,如`git clone ***`)。 3. 配置流程: - 在server文件夹中的config.json文件里,需要添加用户的电子邮件和密码,以便该应用能够通过内置的联系功能发送信息给Marc Hayek。 - 如果想要在本地服务器上运行该应用程序,则需要根据不同的环境配置(开发环境或生产环境)修改config.json文件中的“baseURL”选项。具体而言,开发环境下通常设置为“../build”,生产环境下设置为“../bin”。 4. 使用的技术栈: - JavaScript:虽然没有直接提到,但是由于Angular框架主要是用JavaScript来编写的,因此这是必须理解的核心技术之一。 - TypeScript:Angular使用TypeScript作为开发语言,它是JavaScript的一个超集,添加了静态类型检查等功能。 - Node.js和npm:用于运行JavaScript代码以及管理JavaScript项目的依赖。 - Git:版本控制系统,用于代码的版本管理及协作开发。 5. 关于项目结构: - 该应用的项目文件夹结构可能遵循Angular CLI的典型结构,包含了如下目录:app(存放应用组件)、assets(存放静态资源如图片、样式表等)、environments(存放环境配置文件)、server(存放服务器配置文件如上文的config.json)等。 6. 开发和构建流程: - 开发时,可能会使用Angular CLI来快速生成组件、服务等,并利用热重载等特性进行实时开发。 - 构建应用时,通过gulp等构建工具可以进行代码压缩、ES6转译、单元测试等自动化任务,以确保代码的质量和性能优化。 7. 部署: - 项目最终需要部署到服务器上,配置文件中的“baseURL”选项指明了服务器上的资源基础路径。 8. 关于Git仓库: - 压缩包子文件的名称为MarcHayek-CV-master,表明这是一个使用Git版本控制的仓库,且存在一个名为master的分支,这通常是项目的主分支。 以上知识点围绕Angular应用“MarcHayek-CV:我的简历”的创建、配置、开发、构建及部署流程进行了详细说明,涉及了前端开发中常见的工具、技术及工作流。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入剖析:内存溢出背后的原因、预防及应急策略(专家版)

![深入剖析:内存溢出背后的原因、预防及应急策略(专家版)](https://d8it4huxumps7.cloudfront.net/uploads/images/65e82a01a4196_dangling_pointer_in_c_2.jpg?d=2000x2000) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. 内存溢出的概念及影响 内存溢出,又称
recommend-type

Java中如何对年月日时分秒的日期字符串作如下处理:如何日期分钟介于两个相连的半点之间,就将分钟数调整为前半点

在Java中,你可以使用`java.time`包中的类来处理日期和时间,包括格式化和调整。下面是一个示例,展示了如何根据给定的日期字符串(假设格式为"yyyy-MM-dd HH:mm:ss")进行这样的处理: ```java import java.text.SimpleDateFormat; import java.time.LocalDateTime; import java.time.ZoneId; import java.time.ZonedDateTime; public class Main { public static void main(String[] args
recommend-type

Crossbow Spot最新更新 - 获取Chrome扩展新闻

资源摘要信息:"Crossbow Spot - Latest News Update-crx插件" 该信息是关于一款特定的Google Chrome浏览器扩展程序,名为"Crossbow Spot - Latest News Update"。此插件的目的是帮助用户第一时间获取最新的Crossbow Spot相关信息,它作为一个RSS阅读器,自动聚合并展示Crossbow Spot的最新新闻内容。 从描述中可以提取以下关键知识点: 1. 功能概述: - 扩展程序能让用户领先一步了解Crossbow Spot的最新消息,提供实时更新。 - 它支持自动更新功能,用户不必手动点击即可刷新获取最新资讯。 - 用户界面设计灵活,具有美观的新闻小部件,使得信息的展现既实用又吸引人。 2. 用户体验: - 桌面通知功能,通过Chrome的新通知中心托盘进行实时推送,确保用户不会错过任何重要新闻。 - 提供一个便捷的方式来保持与Crossbow Spot最新动态的同步。 3. 语言支持: - 该插件目前仅支持英语,但开发者已经计划在未来的版本中添加对其他语言的支持。 4. 技术实现: - 此扩展程序是基于RSS Feed实现的,即从Crossbow Spot的RSS源中提取最新新闻。 - 扩展程序利用了Chrome的通知API,以及RSS Feed处理机制来实现新闻的即时推送和展示。 5. 版权与免责声明: - 所有的新闻内容都是通过RSS Feed聚合而来,扩展程序本身不提供原创内容。 - 用户在使用插件时应遵守相关的版权和隐私政策。 6. 安装与使用: - 用户需要从Chrome网上应用店下载.crx格式的插件文件,即Crossbow_Spot_-_Latest_News_Update.crx。 - 安装后,插件会自动运行,并且用户可以对其进行配置以满足个人偏好。 从以上信息可以看出,该扩展程序为那些对Crossbow Spot感兴趣或需要密切跟进其更新的用户提供了一个便捷的解决方案,通过集成RSS源和Chrome通知机制,使得信息获取变得更加高效和及时。这对于需要实时更新信息的用户而言,具有一定的实用价值。同时,插件的未来发展计划中包括了多语言支持,这将使得更多的用户能够使用并从中受益。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【Java内存管理终极指南】:一次性解决内存溢出、泄漏和性能瓶颈

![【Java内存管理终极指南】:一次性解决内存溢出、泄漏和性能瓶颈](https://community.cloudera.com/t5/image/serverpage/image-id/31614iEBC942A7C6D4A6A1/image-size/large?v=v2&px=999) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. Java内存模型