matlab中用y=fft(x)函数表示基四的fft快速变换
时间: 2023-08-04 20:23:22 浏览: 107
MATLAB 中的 `fft()` 函数可以用于计算基四的快速傅里叶变换(FFT)。基四 FFT 是一种特殊的 FFT,它将信号分解为四个子集,并通过蝶形运算将它们重新组合在一起。以下是使用 `fft()` 函数计算基四 FFT 的示例代码:
```matlab
% 生成一个长度为 16 的信号
x = sin(2*pi*(0:15)/16);
% 计算基四 FFT
y = fft(x, 4);
% 打印结果
disp(y);
```
上述代码中,`fft()` 函数的第二个参数设置为 4,表示计算基四 FFT。输出结果是一个长度为 16 的复数向量,其中包含信号的频率分量幅值和相位信息。可以通过进一步处理向量 `y` 来提取有用的信息。
请注意,虽然基四 FFT 是一种特殊的 FFT,但在 MATLAB 中,它的计算方式与常规 FFT 是相同的,只需将 FFT 的长度设置为 4 的幂次即可。因此,可以使用常规的 `fft()` 函数来计算基四 FFT。
相关问题
在matlab中用fft2函数绘制圆孔的法力恢复衍射图
在 MATLAB 中,可以使用 `fft2` 函数来计算二维傅里叶变换,并绘制圆孔的法力恢复衍射图。以下是一个示例代码:
```matlab
% 定义圆孔半径和采样点数
r = 10; % 圆孔半径
N = 256; % 采样点数
% 生成圆孔干涉场
[X, Y] = meshgrid(linspace(-1, 1, N));
R = sqrt(X.^2 + Y.^2);
hole = R < r;
field = hole;
% 计算二维傅里叶变换
ft = fftshift(fft2(field));
% 绘制法力恢复衍射图
figure();
imagesc(abs(ft).^2);
colormap('gray');
axis square;
```
在上述代码中,我们首先定义了圆孔的半径和采样点数。然后使用 `meshgrid` 函数生成了平面网格,并计算出每个网格点到坐标原点的距离,从而得到了圆孔的干涉场。接着使用 `fft2` 函数计算出干涉场的二维傅里叶变换,并对其进行了中心化处理。最后使用 `imagesc` 函数绘制了傅里叶变换的模方,即法力恢复衍射图。
在matlab中用C语言设计FFT
在 MATLAB 中使用 C 语言编写 FFT 有两种方法:
1. 使用 MATLAB 的内置函数 coder,可以将 MATLAB 代码转换为 C 代码。
示例代码:
```matlab
function y = my_fft(x)
%#codegen
coder.cinclude('fftw3.h');
coder.cinclude('fftw3_mkl.h');
N = length(x);
y = zeros(size(x));
p = coder.opaque('void *', 'NULL');
q = coder.opaque('void *', 'NULL');
if N > 1
p = coder.opaque('fftw_plan', 'NULL');
q = coder.opaque('fftw_plan', 'NULL');
x = fftw_mkl(x);
y = fftw_mkl(y);
p = coder.ceval('fftw_plan_dft_1d', N, coder.ref(x), coder.ref(x), FFTW_FORWARD, FFTW_ESTIMATE);
q = coder.ceval('fftw_plan_dft_1d', N, coder.ref(y), coder.ref(y), FFTW_FORWARD, FFTW_ESTIMATE);
coder.ceval('fftw_execute_dft', p, coder.ref(x), coder.ref(x));
coder.ceval('fftw_execute_dft', q, coder.ref(y), coder.ref(y));
coder.ceval('fftw_destroy_plan', p);
coder.ceval('fftw_destroy_plan', q);
coder.ceval('fftw_cleanup');
end
```
2. 使用 MATLAB 的 MEX 文件。
示例代码:
```matlab
#include "mex.h"
#include "fftw3.h"
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
{
double *xreal, *ximag;
fftw_complex *x;
fftw_plan plan;
int N;
/* Check for proper number of arguments */
if (nrhs != 1) {
mexErrMsgIdAndTxt("MATLAB:fftw_mex:invalidNumInputs",
"One input argument required.");
} else if (nlhs > 1) {
mexErrMsgIdAndTxt("MATLAB:fftw_mex:maxlhs",
"Too many output arguments.");
}
/* Check type of input argument */
if (!mxIsDouble(prhs[0]) || mxIsComplex(prhs[0])) {
mexErrMsgIdAndTxt("MATLAB:fftw_mex:inputNotReal",
"Input argument must be real double array.");
}
/* Get size of input argument */
N = mxGetNumberOfElements(prhs[0]);
/* Allocate memory for input and output arrays */
xreal = mxGetPr(prhs[0]);
ximag = mxMalloc(N * sizeof(double));
x = fftw_malloc(N * sizeof(fftw_complex));
/* Fill complex array with input data */
for (int i = 0; i < N; i++) {
x[i][0] = xreal[i];
x[i][1] = 0.0;
}
/* Create FFT plan */
plan = fftw_plan_dft_1d(N, x, x, FFTW_FORWARD, FFTW_ESTIMATE);
/* Execute FFT plan */
fftw_execute(plan);
/* Copy results to output array */
plhs[0] = mxCreateDoubleMatrix(N, 1, mxCOMPLEX);
xreal = mxGetPr(plhs[0]);
ximag = mxGetPi(plhs[0]);
for (int i = 0; i < N; i++) {
xreal[i] = x[i][0];
ximag[i] = x[i][1];
}
/* Clean up memory and FFT plan */
fftw_destroy_plan(plan);
fftw_free(x);
mxFree(ximag);
}
```
这两种方法都需要使用 FFTW 库,所以要先安装 FFTW 库。
阅读全文