import pandas as pd import numpy as np from sklearn.preprocessing import Imputer from sklearn.model_selection import train_test_split df_table_all = pd.read_csv("D:\python_pytharm\datasets\chapter3_data_handled\\train_all.csv", index_col=0) df_table_all = df_table_all.drop(['LOAN_DATE_x'], axis=1) df_table_all = df_table_all.drop(['LOAN_DATE_y'], axis=1) df_table_all = df_table_all.dropna(axis=1,how='all') columns = df_table_all.columns imr = Imputer(missing_values='NaN', strategy='mean', axis=0) df_table_all = pd.DataFrame(imr.fit_transform(df_table_all.values)) df_table_all.columns = columns df_table_all.to_csv("D:\python_pytharm\datasets\chapter3_data_handled\\trainafter.csv")解释代码
时间: 2023-06-11 09:10:22 浏览: 183
这段代码主要进行数据处理,包括读取csv文件、删除指定列和删除全为NaN的列。然后使用Imputer类对NaN值进行填充,填充方法为使用该列的平均值。最后将处理后的数据保存为新的csv文件。
具体代码解释如下:
1. import pandas as pd import numpy as np from sklearn.preprocessing import Imputer from sklearn.model_selection import train_test_split
导入所需的库和模块。
2. df_table_all = pd.read_csv("D:\python_pytharm\datasets\chapter3_data_handled\\train_all.csv", index_col=0)
使用pandas库中的read_csv()函数读取指定路径下的csv文件,将其存储为DataFrame格式,并将第一列作为索引列。
3. df_table_all = df_table_all.drop(['LOAN_DATE_x'], axis=1) df_table_all = df_table_all.drop(['LOAN_DATE_y'], axis=1)
使用drop()函数删除指定列。
4. df_table_all = df_table_all.dropna(axis=1,how='all')
使用dropna()函数删除全为NaN的列。
5. columns = df_table_all.columns
获取DataFrame的列名。
6. imr = Imputer(missing_values='NaN', strategy='mean', axis=0)
创建Imputer对象,用于填充NaN值。missing_values参数指定需要填充的值,strategy参数指定填充方法,axis参数指定填充方向。
7. df_table_all = pd.DataFrame(imr.fit_transform(df_table_all.values))
使用fit_transform()函数填充NaN值,并将其转换为DataFrame格式。
8. df_table_all.columns = columns
将DataFrame的列名设置为原始列名。
9. df_table_all.to_csv("D:\python_pytharm\datasets\chapter3_data_handled\\trainafter.csv")
使用to_csv()函数将处理后的数据保存为新的csv文件。
阅读全文