给出使用小波变换插值法对图片进行超分辨率重建的python代码
时间: 2024-05-12 18:17:35 浏览: 100
以下是使用小波变换插值法进行图片超分辨率重建的Python代码:
```python
import cv2
import numpy as np
import pywt
def upsample(image):
# Apply wavelet transform
coeffs = pywt.dwt2(image, 'haar')
LL, (LH, HL, HH) = coeffs
# Upsample LH, HL and HH coefficients
LH_recon = cv2.resize(LH, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC)
HL_recon = cv2.resize(HL, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC)
HH_recon = cv2.resize(HH, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC)
new_coeffs = [LL, (LH_recon, HL_recon, HH_recon)]
# Apply inverse wavelet transform
new_image = pywt.idwt2(new_coeffs, 'haar')
return new_image
# Load input image
image = cv2.imread('input_image.jpg', cv2.IMREAD_GRAYSCALE)
# Upsample input image
new_image = upsample(image)
# Save output image
cv2.imwrite('output_image.jpg', new_image)
```
希望这个代码能够帮助到你!如果你有其它问题,欢迎继续询问。
阅读全文