帮我写一段NL-means去噪MATLAB算法
时间: 2023-06-17 17:03:26 浏览: 132
基于MATLAB实现图像去噪算法.rar
5星 · 资源好评率100%
好的,下面是一个简单的NL-means去噪MATLAB算法:
```matlab
function [denoisedImg] = nlMeansDenoising(noisyImg, patchSize, windowSize, h)
% Input:
% noisyImg - 带有噪声的图像
% patchSize - 每个块的大小
% windowSize - 用于搜索相似块的窗口大小
% h - 控制去噪强度的参数
% Output:
% denoisedImg - 去噪后的图像
% 转换为灰度图像
if size(noisyImg, 3) == 3
noisyImg = rgb2gray(noisyImg);
end
% 复制一份噪声图像作为去噪后的图像的初始值
denoisedImg = double(noisyImg);
% 计算图像中每个像素周围的块
halfPatchSize = floor(patchSize/2);
halfWindowSize = floor(windowSize/2);
[rows, cols] = size(noisyImg);
paddedImg = padarray(noisyImg, [halfWindowSize halfWindowSize], 'symmetric');
for i = 1+halfWindowSize:rows+halfWindowSize
for j = 1+halfWindowSize:cols+halfWindowSize
% 获取以(i,j)为中心的块
i1 = i - halfPatchSize;
i2 = i + halfPatchSize;
j1 = j - halfPatchSize;
j2 = j + halfPatchSize;
patch = paddedImg(i1:i2, j1:j2);
% 在以(i,j)为中心的窗口内搜索相似块
w1 = i - halfWindowSize;
w2 = i + halfWindowSize;
h1 = j - halfWindowSize;
h2 = j + halfWindowSize;
searchWindow = paddedImg(w1:w2, h1:h2);
[searchRows, searchCols] = size(searchWindow);
minMSE = Inf;
for m = 1:searchRows-halfPatchSize*2
for n = 1:searchCols-halfPatchSize*2
% 获取搜索窗口中的相似块
m1 = m + halfWindowSize;
m2 = m + halfWindowSize + patchSize - 1;
n1 = n + halfWindowSize;
n2 = n + halfWindowSize + patchSize - 1;
similarPatch = searchWindow(m1:m2, n1:n2);
% 计算均方误差
mse = sum(sum((patch-similarPatch).^2))/(patchSize^2);
% 记录最小的均方误差和相似块的位置
if mse < minMSE
minMSE = mse;
minM = m;
minN = n;
end
end
end
% 计算权重并进行去噪
weightSum = 0;
weightedPatchSum = 0;
for m = minM:minM+patchSize-1
for n = minN:minN+patchSize-1
% 获取搜索窗口中的相似块
m1 = m + halfWindowSize;
m2 = m + halfWindowSize + patchSize - 1;
n1 = n + halfWindowSize;
n2 = n + halfWindowSize + patchSize - 1;
similarPatch = searchWindow(m1:m2, n1:n2);
% 计算相似块与目标块的权重
weight = exp(-minMSE/(h^2));
weightedPatchSum = weightedPatchSum + weight*similarPatch;
weightSum = weightSum + weight;
end
end
denoisedImg(i-halfWindowSize, j-halfWindowSize) = weightedPatchSum/weightSum;
end
end
% 转换图像类型为uint8
denoisedImg = uint8(denoisedImg);
end
```
其中,`noisyImg`为带有噪声的输入图像,`patchSize`为每个块的大小,`windowSize`为用于搜索相似块的窗口大小,`h`为控制去噪强度的参数。函数返回去噪后的图像`denoisedImg`。
阅读全文