调用sklearn中的模块方法,分别用logistics回归、SVM、BP神经网络对sklearn数据库中鸢尾花数据(去掉某一个类,剩下的两个类)进行二分类,并简要分析分类性能。
时间: 2024-04-09 18:28:48 浏览: 119
对于鸢尾花数据集的二分类任务,我们可以使用Logistic回归、支持向量机(SVM)和BP神经网络进行建模和评估。
首先,导入鸢尾花数据集和所需的模块:
```python
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
```
然后,加载鸢尾花数据集并进行预处理:
```python
iris = load_iris()
X = iris.data
y = iris.target
# 去掉一个类别,只保留两个类别
X = X[y != 0]
y = y[y != 0]
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
接下来,分别使用Logistic回归、SVM和BP神经网络进行建模和预测:
```python
# Logistic回归
logreg = LogisticRegression()
logreg.fit(X_train, y_train)
logreg_preds = logreg.predict(X_test)
# SVM
svm = SVC()
svm.fit(X_train, y_train)
svm_preds = svm.predict(X_test)
# BP神经网络
mlp = MLPClassifier()
mlp.fit(X_train, y_train)
mlp_preds = mlp.predict(X_test)
```
最后,使用一些性能指标来评估分类器的性能:
```python
logreg_accuracy = accuracy_score(y_test, logreg_preds)
logreg_precision = precision_score(y_test, logreg_preds)
logreg_recall = recall_score(y_test, logreg_preds)
logreg_f1 = f1_score(y_test, logreg_preds)
svm_accuracy = accuracy_score(y_test, svm_preds)
svm_precision = precision_score(y_test, svm_preds)
svm_recall = recall_score(y_test, svm_preds)
svm_f1 = f1_score(y_test, svm_preds)
mlp_accuracy = accuracy_score(y_test, mlp_preds)
mlp_precision = precision_score(y_test, mlp_preds)
mlp_recall = recall_score(y_test, mlp_preds)
mlp_f1 = f1_score(y_test, mlp_preds)
```
根据以上代码,你可以分别得到Logistic回归、SVM和BP神经网络在鸢尾花数据集上的分类性能,包括准确率(accuracy)、精确率(precision)、召回率(recall)和F1值(F1-score)。
阅读全文