python屏幕识别训练
时间: 2023-08-17 17:04:11 浏览: 172
要实现Python屏幕识别训练,可以使用Python的图像处理库和机器学习库。以下是一个简单的示例代码,可以识别屏幕上的数字:
```python
import numpy as np
import cv2
import os
# 读取数字图片数据集
dataset_path = 'digits_dataset'
dataset = []
for filename in os.listdir(dataset_path):
if filename.endswith('.png'):
img = cv2.imread(os.path.join(dataset_path, filename), cv2.IMREAD_GRAYSCALE)
img = cv2.resize(img, (20, 20))
dataset.append((img, int(filename[0])))
# 拆分数据集为训练集和测试集
np.random.shuffle(dataset)
train_set = dataset[:800]
test_set = dataset[800:]
# 训练模型
X_train = np.array([img.flatten() for img, label in train_set])
y_train = np.array([label for img, label in train_set])
X_test = np.array([img.flatten() for img, label in test_set])
y_test = np.array([label for img, label in test_set])
model = cv2.ml.KNearest_create()
model.train(X_train, cv2.ml.ROW_SAMPLE, y_train)
# 测试模型
test_results = model.predict(X_test)
accuracy = np.mean(test_results[1] == y_test)
print('Accuracy:', accuracy)
# 使用模型识别屏幕上的数字
while True:
screenshot = np.array(pyautogui.screenshot())
screenshot_gray = cv2.cvtColor(screenshot, cv2.COLOR_BGR2GRAY)
screenshot_resized = cv2.resize(screenshot_gray, (200, 200))
_, screenshot_binary = cv2.threshold(screenshot_resized, 127, 255, cv2.THRESH_BINARY)
for x in range(0, 180, 20):
for y in range(0, 180, 20):
digit = screenshot_binary[y:y+20, x:x+20]
digit_flattened = digit.flatten()
_, result, _, _ = model.findNearest(digit_flattened.reshape(1, -1), 1)
print(int(result[0][0]), end=' ')
print()
cv2.imshow('Screenshot', screenshot_binary)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cv2.destroyAllWindows()
```
需要注意的是,这个示例代码只是一个简单的示例,实际情况可能会更复杂。例如,数字图片数据集可能需要自己手动准备,模型的训练参数可能需要调整,等等。具体实现方式需要根据具体情况进行调整。
阅读全文