梯度下降法 学习率 损失函数
时间: 2024-04-18 20:21:16 浏览: 126
机器学习作业-任务是在MATLAB中编写一个程序来拟合线性回归中的一条直线 最速梯度下降法进行损失函数+源代码+文档说明
梯度下降法是一种常用的优化算法,用于求解函数的最小值或最大值。它通过迭代的方式不断更新参数,使得目标函数的值逐渐趋于最优解。
在梯度下降法中,学习率是一个重要的超参数,用于控制每次参数更新的步长。学习率越大,每次更新的步长越大,算法收敛速度可能会更快,但也可能会导致错过最优解;学习率越小,每次更新的步长越小,算法收敛速度可能会更慢,但也更有可能找到更精确的最优解。
损失函数是用来衡量模型预测结果与真实值之间的差异的函数。在梯度下降法中,通过最小化损失函数来寻找最优解。常见的损失函数包括均方误差(Mean Squared Error)和交叉熵(Cross Entropy)等。
阅读全文