# 循环处理每一行 for i, row in df[mask].iterrows(): # 计算前后平均值 average_values = {} for column in df.columns: if column in ['车速']: average_values[column] = (row[column] + df.loc[i+1, column]) / 2 # 创建新行并插入数据 new_row = {'数据采集时间': row['数据采集时间'] + pd.Timedelta(seconds=15), '时间差': 15} # 设置新行的时间差为15秒 new_row.update(average_values) # 添加到新行DataFrame中 new_rows = new_rows.append(new_row, ignore_index=True)这段代码是否会无限循环
时间: 2024-04-17 16:23:18 浏览: 85
RGB.zip_Image-RGB-values_RGB值_matlab 温度计算_rgb _rgb表示温度
5星 · 资源好评率100%
这段代码不会无限循环。它是一个基于条件筛选的循环,遍历满足条件的每一行数据进行处理。
循环的条件是 `df[mask]`,其中 `mask` 是一个布尔条件,用于筛选出满足条件的行。只有满足条件的行才会进入循环进行处理。
在循环中,每一行的数据被用于计算前后平均值,并创建一个新的行数据 `new_row`。然后将新行添加到 `new_rows` DataFrame 中。
这个过程会在满足条件的行上进行迭代,直到遍历完所有满足条件的行为止。循环不会无限进行下去,它将在处理完所有满足条件的行后结束。
希望这个解答对你有帮助!如果你还有其他问题,请随时提问。
阅读全文