python实例分割代码
时间: 2023-09-24 15:06:07 浏览: 77
以下是一个使用 Mask R-CNN 进行实例分割的 Python 代码示例:
```
import os
import sys
import numpy as np
import skimage.draw
ROOT_DIR = os.path.abspath("../../")
# 导入 Mask RCNN
sys.path.append(ROOT_DIR)
from mrcnn.config import Config
from mrcnn import model as modellib, utils
MODEL_DIR = os.path.join(ROOT_DIR, "logs")
COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5")
class ShapesConfig(Config):
NAME = "shapes"
GPU_COUNT = 1
IMAGES_PER_GPU = 1
NUM_CLASSES = 1 + 3 # background + 3 shapes
IMAGE_MIN_DIM = 128
IMAGE_MAX_DIM = 128
RPN_ANCHOR_SCALES = (8, 16, 32, 64, 128)
config = ShapesConfig()
config.display()
class ShapesDataset(utils.Dataset):
def __init__(self):
super().__init__()
def load_shapes(self, count, height, width):
self.add_class("shapes", 1, "square")
self.add_class("shapes", 2, "circle")
self.add_class("shapes", 3, "triangle")
for i in range(count):
bg_color, shapes = self.random_image(height, width)
self.add_image("shapes", image_id=i, path=None,
width=width, height=height,
bg_color=bg_color, shapes=shapes)
def load_image(self, image_id):
info = self.image_info[image_id]
bg_color = info['bg_color']
image = np.ones([info['height'], info['width'], 3], dtype=np.uint8)
image = image * bg_color.astype(np.uint8)
return image
def image_reference(self, image_id):
info = self.image_info[image_id]
if info["source"] == "shapes":
return info["shapes"]
else:
super(self.__class__).image_reference(self, image_id)
def load_mask(self, image_id):
info = self.image_info[image_id]
shapes = info['shapes']
count = len(shapes)
mask = np.zeros([info['height'], info['width'], count], dtype=np.uint8)
for i, (shape, dims) in enumerate(shapes):
if shape == 'square':
x, y = dims
rr, cc = skimage.draw.polygon([y-5, y-5, y+5, y+5], [x-5, x+5, x+5, x-5])
mask[rr, cc, i] = 1
elif shape == 'circle':
x, y = dims
rr, cc = skimage.draw.circle(x, y, 5)
mask[rr, cc, i] = 1
elif shape == "triangle":
x, y, x1, y1, x2, y2 = dims
rr, cc = skimage.draw.polygon([x, x1, x2], [y, y1, y2])
mask[rr, cc, i] = 1
return mask, np.ones([count], dtype=np.int32)
# 训练集样本数为10,图片宽高为128
dataset_train = ShapesDataset()
dataset_train.load_shapes(10, 128, 128)
dataset_train.prepare()
# 测试集样本数为3,图片宽高为128
dataset_val = ShapesDataset()
dataset_val.load_shapes(3, 128, 128)
dataset_val.prepare()
# 建立模型
model = modellib.MaskRCNN(mode="training", config=config,
model_dir=MODEL_DIR)
# 使用 COCO 预训练模型并对其进行训练
model.load_weights(COCO_MODEL_PATH, by_name=True,
exclude=["mrcnn_class_logits", "mrcnn_bbox_fc", "mrcnn_bbox", "mrcnn_mask"])
model.train(dataset_train, dataset_val,
learning_rate=config.LEARNING_RATE,
epochs=1,
layers='heads')
```
具体的代码解释可以参考代码注释,本示例假设已经安装好了 `mrcnn` 库,如果未安装需要先进行安装。
阅读全文