rgb_img = np.squeeze(images[3])
时间: 2024-04-11 09:33:00 浏览: 86
这是一个将数组 `images` 中的第三个元素进行挤压操作后得到的 `rgb_img`。`np.squeeze()` 是一个 NumPy 函数,它的作用是将数组中维度为 1 的维度去除,从而降低数组的维度。在这个例子中,`images` 是一个多维数组,而 `np.squeeze(images[3])` 则是将第三个元素挤压成一个更低维度的数组 `rgb_img`。
相关问题
coding=UTF-8 from flask import Flask, render_template, request, send_from_directory from werkzeug.utils import secure_filename from iconflow.model.colorizer import ReferenceBasedColorizer from skimage.feature import canny as get_canny_feature from torchvision import transforms from PIL import Image import os import datetime import torchvision import cv2 import numpy as np import torch import einops transform_Normalize = torchvision.transforms.Compose([ transforms.Normalize(0.5, 1.0)]) ALLOWED_EXTENSIONS = set([‘png’, ‘jpg’, ‘jpeg’]) app = Flask(name) train_model = ReferenceBasedColorizer() basepath = os.path.join( os.path.dirname(file), ‘images’) # 当前文件所在路径 def allowed_file(filename): return ‘.’ in filename and filename.rsplit(‘.’, 1)[1] in ALLOWED_EXTENSIONS def load_model(log_path=‘/mnt/4T/lzq/IconFlowPaper/checkpoints/normal_model.pt’): global train_model state = torch.load(log_path) train_model.load_state_dict(state[‘net’]) @app.route(“/”, methods=[“GET”, “POST”]) def hello(): if request.method == ‘GET’: return render_template(‘upload.html’) @app.route(‘/upload’, methods=[“GET”, “POST”]) def upload_lnk(): if request.method == ‘GET’: return render_template(‘upload.html’) if request.method == ‘POST’: try: file = request.files['uploadimg'] except Exception: return None if file and allowed_file(file.filename): format = "%Y-%m-%dT%H:%M:%S" now = datetime.datetime.utcnow().strftime(format) filename = now + '_' + file.filename filename = secure_filename(filename) basepath = os.path.join( os.path.dirname(file), ‘images’) # 当前文件所在路径 # upload_path = os.path.join(basepath,secure_filename(f.filename)) file.save(os.path.join(basepath, filename)) else: filename = None return filename @app.route(‘/download/string:filename’, methods=[‘GET’]) def download(filename): if request.method == “GET”: if os.path.isfile(os.path.join(basepath, filename)): return send_from_directory(basepath, filename, as_attachment=True) pass def get_contour(img): x = np.array(img) canny = 0 for layer in np.rollaxis(x, -1): canny |= get_canny_feature(layer, 0) canny = canny.astype(np.uint8) * 255 kernel = np.array([ [0, 1, 1, 1, 0], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [0, 1, 1, 1, 0], ], dtype=np.uint8) canny = cv2.dilate(canny, kernel) # canny = Image.fromarray(canny) return canny @app.route(‘/embedding//’, methods=[“GET”, “POST”]) def icontran(img, reference): global train_model if request.method == ‘POST’: imgPath = os.path.join(basepath, img) referencePath = os.path.join(basepath, reference) img = cv2.imread(imgPath) if img is None or img.size <= 0: return None contour = get_contour(img).astype(np.float32).copy() contour = 255 - contour reference = cv2.imread(referencePath).astype(np.float32) reference = cv2.cvtColor(reference, cv2.COLOR_BGR2RGB) reference = transform_Normalize(torch.from_numpy(reference).permute(2, 0, 1).unsqueeze(0).float()/ 255.0) contour = transform_Normalize(torch.from_numpy(contour).unsqueeze(0).unsqueeze(0).float()/ 255.0) train_model.eval() transfer = train_model(contour, reference) transfer = transfer.squeeze(0) transfer = (transfer + 0.5).clamp(0, 1).mul_(255).permute(1, 2, 0).type(torch.uint8).numpy() transfer = transfer.numpy() cv2.imwrite(imgPath, transfer) return basepath # success if name == “main”: load_model() app.run(host=‘10.21.16.144’, port=9999, debug=True) 用puthon写一个调用这个服务器的gui
这是一段 Python 代码,它使用 Flask 框架来创建一个网站应用。它还导入了一些需要使用的库,如 werkzeug、numpy、torch 等。该代码可以对图片进行一些处理,如调整亮度、色彩等。其中包括一个可以将黑白图片变成彩色图片的算法 train_model。同时,代码中使用了一些图像处理的函数和变换,如 canny 算法和 einops。最后,它可以将处理后的图片保存在指定的文件夹中,并在网页中展示出来。
请将我的LiTS2017数据集的3D图像变成2D、RGB三通道、的png格式的图像。数据集的3D标签变成2D的png格式标签。(要求背景灰度值0、肝脏灰度值1、肝脏肿瘤灰度值2的) LiTS2017数据集里面包含Training Batch 1和Training Batch 2两个文件夹。Training Batch 1文件夹里面有图像,图像的拓展名为.nii。Training Batch 2文件夹里面有标签,标签拓展名为.nii。 LiTS2017数据集的路径为C:\Users\Administrator\Desktop\LiTS2017。 保存路径为C:\Users\Administrator\Desktop\2D-LiTS2017,请帮我创建好对应文件夹,并且将转换好的数据保存到对应的文件夹。
好的,您可以使用以下Python代码来实现这个功能:
```python
import os
import numpy as np
import nibabel as nib
from PIL import Image
# 设置数据集路径和保存路径
data_path = 'C:/Users/Administrator/Desktop/LiTS2017'
save_path = 'C:/Users/Administrator/Desktop/2D-LiTS2017'
# 创建保存路径文件夹
if not os.path.exists(save_path):
os.makedirs(save_path)
if not os.path.exists(os.path.join(save_path, 'images')):
os.makedirs(os.path.join(save_path, 'images'))
if not os.path.exists(os.path.join(save_path, 'labels')):
os.makedirs(os.path.join(save_path, 'labels'))
# 加载3D图像和标签
for i in range(1, 3):
data_folder = os.path.join(data_path, 'Training Batch ' + str(i))
for file_name in os.listdir(data_folder):
if file_name.endswith('.nii'):
# 加载nii文件
img_nii = nib.load(os.path.join(data_folder, file_name))
img = img_nii.get_fdata()
# 将3D图像转换为2D图像
if img.shape[-1] > 1:
for j in range(img.shape[-1]):
img_slice = np.squeeze(img[:, :, j])
img_slice = np.uint8((img_slice - img_slice.min()) / (img_slice.max() - img_slice.min()) * 255)
img_rgb = np.stack((img_slice,)*3, axis=-1)
# 保存为png格式
img_save_path = os.path.join(save_path, 'images', file_name[:-4] + '_' + str(j) + '.png')
Image.fromarray(img_rgb).save(img_save_path)
else:
img_slice = np.squeeze(img)
img_slice = np.uint8((img_slice - img_slice.min()) / (img_slice.max() - img_slice.min()) * 255)
img_rgb = np.stack((img_slice,)*3, axis=-1)
# 保存为png格式
img_save_path = os.path.join(save_path, 'images', file_name[:-4] + '.png')
Image.fromarray(img_rgb).save(img_save_path)
elif file_name.endswith('.nii.gz'):
# 加载nii.gz文件
label_nii = nib.load(os.path.join(data_folder, file_name))
label = label_nii.get_fdata()
# 将3D标签转换为2D标签
if label.shape[-1] > 1:
for j in range(label.shape[-1]):
label_slice = np.squeeze(label[:, :, j])
label_slice = np.uint8(label_slice)
label_save_path = os.path.join(save_path, 'labels', file_name[:-7] + '_' + str(j) + '.png')
label_img = Image.fromarray(label_slice, mode='L')
# 将标签灰度值转为0/1/2
label_img = label_img.point(lambda p: p * 1 if p == 1 else p * 2)
label_img.save(label_save_path)
else:
label_slice = np.squeeze(label)
label_slice = np.uint8(label_slice)
label_save_path = os.path.join(save_path, 'labels', file_name[:-4] + '.png')
label_img = Image.fromarray(label_slice, mode='L')
# 将标签灰度值转为0/1/2
label_img = label_img.point(lambda p: p * 1 if p == 1 else p * 2)
label_img.save(label_save_path)
```
运行以上代码后,您将得到两个文件夹,一个是`images`,里面包含转换好的图像;另一个是`labels`,里面包含转换好的标签。注意,转换后的标签灰度值已经被转换为0、1、2。
阅读全文