python操作excel表格归类
时间: 2023-08-03 22:08:06 浏览: 192
你可以使用Python的pandas库来操作Excel表格并进行归类。以下是一个简单的例子:
首先,确保你已经安装了pandas库。可以使用以下命令进行安装:
```
pip install pandas
```
接下来,导入pandas库并读取Excel文件:
```python
import pandas as pd
# 读取Excel文件
data = pd.read_excel('example.xlsx')
```
假设你的Excel文件有两列,分别是"姓名"和"部门"。现在,我们可以使用pandas的groupby方法根据"部门"对数据进行归类:
```python
# 根据"部门"对数据进行归类
grouped_data = data.groupby('部门')
# 遍历每个部门
for department, group in grouped_data:
print("部门:", department)
print(group)
```
上述代码将根据"部门"列对数据进行分组,并遍历每个部门打印出相应的数据。
你也可以对数据进行进一步的处理,如计算每个部门的平均值、求和等。pandas库提供了许多方便的操作方法,你可以根据具体需求进行使用。
这只是一个简单的示例,希望能对你有所帮助!如果你有更具体的问题,请提供更多细节。
相关问题
python excel怎么归类
使用Python对Excel进行归类的方法有多种。其中一种常见的方法是使用xlrd和xlwt库来读取和写入Excel文件。
首先,使用xlrd库打开Excel文件并获取工作表:
```python
import xlrd
data = xlrd.open_workbook('test.xlsx')
table = data.sheet_by_name('Sheet1')
```
然后,使用xlrd库的相关方法获取数据行数和列数,并打印数据:
```python
nrows = table.nrows
ncols = table.ncols
for i in range(nrows):
print(table.row_values(i))
```
另外,还可以使用openpyxl库来对Excel进行归类。下面是一个示例代码,演示了如何使用openpyxl库对Excel进行归类:
```python
import openpyxl
wb = openpyxl.Workbook()
ws = wb.active
ws.title = '汇总'
ws.append(['物料编号', '物料描述', '批号批数量'])
all_wb = openpyxl.load_workbook('日领料单.xlsx')
all_ws = all_wb.worksheets
res = {}
for w in all_ws:
for row in range(4, w.max_row-3):
if w['K' + str(row)].value not in res.keys():
res.update({w['K' + str(row)].value:{'物料描述':w['P' + str(row)].value, '批号批数量':int(w['N' + str(row)].value)}})
else:
res[w['K' + str(row)].value]['批号批数量'] = int(w['N' + str(row)].value)
li = list(res.items())
li.sort(key=lambda x:x<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* [Python小姿势 - Python操作Excel表格数据](https://blog.csdn.net/weixin_39032019/article/details/130356147)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *3* [Python对excel操作——分类汇总278张Excel表中的数据](https://blog.csdn.net/qq_41404557/article/details/124754304)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
用python 就excel 绩点表格做一个归类程序。该excel 文档中有全部学生姓名
和他们的成绩信息,你可以使用pandas库来读取Excel文件,在读取后按照一定的规则进行分组,例如按照成绩排名进行分组,将学生归类到不同的等级。代码示例:
```python
import pandas as pd
# 读取Excel文件
data = pd.read_excel('绩点表格.xlsx')
# 按成绩排名进行分组
data['等级'] = pd.cut(data['成绩'], [0, 60, 70, 80, 90, 100], labels=['不及格', '及格', '中等', '良好', '优秀'])
# 输出结果保存到Excel文件
data.to_excel('归类后绩点表格.xlsx', index=False)
```
以上代码将根据成绩的分数将学生归类到不同的等级,并将结果保存到另一个Excel文件中。
阅读全文
相关推荐
















