def MEAN_Spot(opt): inputs1 = layers.Input(shape=(42, 42, 1)) inputs2 = layers.Input(shape=(42, 42, 1)) inputs3 = layers.Input(shape=(42, 42, 1)) inputs = layers.Concatenate()([inputs1, inputs2, inputs3]) conv1 = layers.Conv2D(3, (7,7), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs) ba1 = BasicBlock(8, 18)(conv1) ba2 = BasicBlock(18, 28, stride=2)(ba1) att = BasicBlock1(28, 8, stride=2)(ba2) # interpretation 1 merged_conv = layers.Conv2D(8, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.1))(att) merged_pool = layers.MaxPooling2D(pool_size=(2, 2), padding='same', strides=(2,2))(merged_conv) flat = layers.Flatten()(merged_pool) flat_do = layers.Dropout(0.2)(flat) # outputs outputs = layers.Dense(1, activation='linear', name='spot')(flat_do) #Takes input u, v, os model = keras.models.Model(inputs=[inputs1, inputs2, inputs3], outputs=[outputs]) model.compile( loss={'spot':'mse'}, optimizer=opt, metrics={'spot':tf.keras.metrics.MeanAbsoluteError()}, ) return model 模型文件报错 alueError: Layer weight shape (16,) not compatible with provided weight shape (3, 3, 16, 16)

时间: 2023-10-04 22:09:44 浏览: 29
这个报错是因为模型中的某一层的权重形状与提供的权重形状不匹配。你可以通过查看模型中的每一层的权重形状,并检查提供的权重形状是否与它们匹配来定位问题。 根据你提供的代码,可能是 BasicBlock 层中的某个权重形状不匹配。你可以通过在 BasicBlock 中添加打印语句或使用调试器来查看每个层的权重形状。如果发现某个权重形状不匹配,可以尝试更改模型的权重文件或更改该层的权重形状。 另外,你可以尝试重新训练模型,看看是否可以解决问题。如果你无法解决问题,请提供更多的上下文和代码,以便我可以更好地理解你的问题并给出更具体的建议。
相关问题

def MEAN_Spot(opt): # channel 1 inputs1 = layers.Input(shape=(42, 42, 1)) inputs2 = layers.Input(shape=(42, 42, 1)) inputs3 = layers.Input(shape=(42, 42, 1)) # merge 1 inputs = layers.Concatenate()([inputs1, inputs2, inputs3]) conv1 = layers.Conv2D(3, (7,7), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs)改为class定义形式

你可以将这段代码转化为一个类的形式,例如: ``` from tensorflow.keras import layers from tensorflow.keras.regularizers import l2 class MeanSpot: def __init__(self): self.inputs1 = layers.Input(shape=(42, 42, 1)) self.inputs2 = layers.Input(shape=(42, 42, 1)) self.inputs3 = layers.Input(shape=(42, 42, 1)) def build(self): # merge 1 inputs = layers.Concatenate()([self.inputs1, self.inputs2, self.inputs3]) conv1 = layers.Conv2D(3, (7,7), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs) return conv1 ``` 这样,你就可以使用 `MeanSpot` 类来创建一个 `MEAN_Spot` 对象,然后调用 `build()` 方法来构建模型。例如: ``` mean_spot = MeanSpot() model = mean_spot.build() ``` 这个模型与原来的 `MEAN_Spot` 函数是等价的。

class定义basic block(self, in_channels, out_channels, stride=1)模块之后如何放到def MEAN_Spot(opt): # channel 1 inputs1 = layers.Input(shape=(42, 42, 1)) inputs2 = layers.Input(shape=(42, 42, 1)) inputs3 = layers.Input(shape=(42, 42, 1)) # merge 1 inputs = layers.Concatenate()([inputs1, inputs2, inputs3]) conv1 = layers.Conv2D(3, (7,7), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs)后面

可以在`def MEAN_Spot(opt)`中直接调用定义好的`BasicBlock`类,具体方法是在`def MEAN_Spot(opt)`中实例化`BasicBlock`类,然后将实例化的对象作为一个层连接到`conv1`之后。具体代码实现如下: ```python class BasicBlock(keras.layers.Layer): def __init__(self, out_channels, kernel_size=3, strides=1): super(BasicBlock, self).__init__() self.conv1 = keras.layers.Conv2D(out_channels, kernel_size, strides=strides, padding='same') self.bn1 = keras.layers.BatchNormalization() self.relu = keras.layers.ReLU() self.conv2 = keras.layers.Conv2D(out_channels, kernel_size, strides=1, padding='same') self.bn2 = keras.layers.BatchNormalization() if strides != 1: self.downsample = keras.Sequential([ keras.layers.Conv2D(out_channels, 1, strides=strides), keras.layers.BatchNormalization() ]) else: self.downsample = lambda x: x def call(self, inputs, training=False): identity = inputs x = self.conv1(inputs) x = self.bn1(x, training=training) x = self.relu(x) x = self.conv2(x) x = self.bn2(x, training=training) identity = self.downsample(identity) x += identity x = self.relu(x) return x def MEAN_Spot(opt): inputs1 = keras.layers.Input(shape=(42, 42, 1)) inputs2 = keras.layers.Input(shape=(42, 42, 1)) inputs3 = keras.layers.Input(shape=(42, 42, 1)) inputs = keras.layers.Concatenate()([inputs1, inputs2, inputs3]) conv1 = keras.layers.Conv2D(3, (7, 7), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs) ba1 = BasicBlock(out_channels=64, kernel_size=3, strides=1)(conv1) ba2 = BasicBlock(out_channels=64, kernel_size=3, strides=1)(ba1) att = BasicBlock(out_channels=64, kernel_size=3, strides=1)(ba2) merged_conv = keras.layers.Conv2D(8, (5, 5), padding='same', activation='relu', kernel_regularizer=l2(0.1))(att) merged_pool = keras.layers.MaxPooling2D(pool_size=(2, 2), padding='same', strides=(2, 2))(merged_conv) flat = keras.layers.Flatten()(merged_pool) flat_do = keras.layers.Dropout(0.2)(flat) outputs = keras.layers.Dense(1, activation='linear', name='spot')(flat_do) model = keras.models.Model(inputs=[inputs1, inputs2, inputs3], outputs=[outputs]) model.compile(loss={'spot': 'mse'}, optimizer=opt, metrics={'spot': tf.keras.metrics.MeanAbsoluteError()}) return model ```

相关推荐

def MEAN_Spot(opt): # channel 1 inputs1 = layers.Input(shape=(42,42,1)) conv1 = layers.Conv2D(3, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs1) bn1 = layers.BatchNormalization()(conv1) pool1 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn1) do1 = layers.Dropout(0.3)(pool1) # channel 2 inputs2 = layers.Input(shape=(42,42,1)) conv2 = layers.Conv2D(3, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs2) bn2 = layers.BatchNormalization()(conv2) pool2 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn2) do2 = layers.Dropout(0.3)(pool2) # channel 3 inputs3 = layers.Input(shape=(42,42,1)) conv3 = layers.Conv2D(8, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs3) bn3 = layers.BatchNormalization()(conv3) pool3 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn3) do3 = layers.Dropout(0.3)(pool3) # merge 1 merged = layers.Concatenate()([do1, do2, do3]) # interpretation 1 merged_conv = layers.Conv2D(8, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.1))(merged) merged_pool = layers.MaxPooling2D(pool_size=(2, 2), padding='same', strides=(2,2))(merged_conv) flat = layers.Flatten()(merged_pool) flat_do = layers.Dropout(0.2)(flat) # outputs outputs = layers.Dense(1, activation='linear', name='spot')(flat_do) #Takes input u, v, os model = keras.models.Model(inputs=[inputs1, inputs2, inputs3], outputs=[outputs]) model.compile( loss={'spot':'mse'}, optimizer=opt, metrics={'spot':tf.keras.metrics.MeanAbsoluteError()}, ) return model 如何先Concatenate输入图像,然后加入CBAM

最新推荐

recommend-type

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a
recommend-type

matlab建立计算力学课程的笔记和文件.zip

matlab建立计算力学课程的笔记和文件.zip
recommend-type

FT-Prog-v3.12.38.643-FTD USB 工作模式设定及eprom读写

FT_Prog_v3.12.38.643--FTD USB 工作模式设定及eprom读写
recommend-type

matlab基于RRT和人工势场法混合算法的路径规划.zip

matlab基于RRT和人工势场法混合算法的路径规划.zip
recommend-type

matlab基于matlab的两步定位软件定义接收机的开源GNSS直接位置估计插件模块.zip

matlab基于matlab的两步定位软件定义接收机的开源GNSS直接位置估计插件模块.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。