java spark 实现spark.ml.feature.ChiSqSelector功能,最后打印出筛选结果和被筛选出的列名?
时间: 2024-03-17 15:43:56 浏览: 139
好的,可以使用以下代码来实现:
```java
import org.apache.spark.ml.feature.ChiSqSelector;
import org.apache.spark.ml.feature.ChiSqSelectorModel;
import org.apache.spark.ml.feature.VectorAssembler;
import org.apache.spark.ml.linalg.Vector;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.functions;
public class ChiSqSelectorExample {
public static void main(String[] args) {
SparkSession spark = SparkSession.builder()
.appName("ChiSqSelectorExample")
.master("local[*]")
.getOrCreate();
// 读取数据集
Dataset<Row> data = spark.read().format("csv")
.option("header", "true")
.option("inferSchema", "true")
.load("data.csv");
// 将特征列组装成一个向量列
VectorAssembler assembler = new VectorAssembler()
.setInputCols(new String[]{"col1", "col2", "col3"})
.setOutputCol("features");
Dataset<Row> df = assembler.transform(data).select("features", "label");
// 运行 ChiSqSelector
ChiSqSelector selector = new ChiSqSelector()
.setNumTopFeatures(2)
.setFeaturesCol("features")
.setLabelCol("label")
.setOutputCol("selectedFeatures");
ChiSqSelectorModel selectorModel = selector.fit(df);
Dataset<Row> result = selectorModel.transform(df);
// 打印筛选结果和被筛选出的列名
Vector selectedFeatures = selectorModel.selectedFeatures();
String[] inputCols = assembler.getInputCols();
String[] selectedCols = new String[selectedFeatures.size()];
for (int i = 0; i < selectedFeatures.size(); i++) {
int index = (int) selectedFeatures.apply(i);
selectedCols[i] = inputCols[index];
}
System.out.println("Selected columns: " + String.join(",", selectedCols));
result.show();
}
}
```
其中,`data.csv` 是数据集文件,需要替换成实际的数据集文件名;`col1`、`col2`、`col3` 是数据集中的特征列名,需要替换成实际的特征列名;`label` 是数据集中的标签列名,需要替换成实际的标签列名。运行程序后,会输出选择的特征列名和筛选结果。
阅读全文