请把下面单步预测改变多步预测 : concat = concatenate([lstm_out1,lstm_out2]) # 增加一个TimeDistributed层,以便对每个时间步进行相同的处理 td = TimeDistributed(Dense(128, activation='relu'))(concat) td = TimeDistributed(Dropout(0.2))(td) lstm_out = LSTM(64, return_sequences=False)(td) # 加入LSTM层 lstm_out = Dense(32, activation='relu')(lstm_out) lstm_out = Dense(16, activation='tanh')(lstm_out) res = Dense(trainY.shape[1])(lstm_out) #highway 使用Dense模拟AR自回归过程,为预测添加线性成份,同时使输出可以响应输入的尺度变化。 highway_window = config.highway_window #截取近3个窗口的时间维 保留了所有的输入维度 z = Lambda(lambda k: k[:, -highway_window:, :])(input_data1) z = Lambda(lambda k: K.permute_dimensions(k, (0, 2, 1)))(z) z = Lambda(lambda k: K.reshape(k, (-1, highway_window*trainX1.shape[2])))(z) z = Dense(trainY.shape[1])(z) """ highway_window = config.highway_window z = input1[:, -highway_window:, :] z = Flatten()(K.permute_dimensions(z, (0, 2, 1))) z = Dense(trainY.shape[1])(z) """ res = add([res,z]) res = Activation('sigmoid')(res) model = Model(inputs=[input_data1,input_data2], outputs=res) return model
时间: 2023-12-23 12:05:02 浏览: 74
修改后的代码如下:
```
concat = concatenate([lstm_out1, lstm_out2]) # 增加一个TimeDistributed层,以便对每个时间步进行相同的处理
td = TimeDistributed(Dense(128, activation='relu'))(concat)
td = TimeDistributed(Dropout(0.2))(td)
lstm_out = LSTM(64, return_sequences=True)(td) # 加入LSTM层,并设置return_sequences=True,以便进行多步预测
lstm_out = Dense(32, activation='relu')(lstm_out)
lstm_out = Dense(16, activation='tanh')(lstm_out)
res = Dense(trainY.shape[1])(lstm_out)
#highway 使用Dense模拟AR自回归过程,为预测添加线性成份,同时使输出可以响应输入的尺度变化。
highway_window = config.highway_window
# 截取近3个窗口的时间维 保留了所有的输入维度
z = Lambda(lambda k: k[:, -highway_window:, :])(input_data1)
z = Lambda(lambda k: K.permute_dimensions(k, (0, 2, 1)))(z)
z = Lambda(lambda k: K.reshape(k, (-1, highway_window*trainX1.shape[2])))(z)
z = Dense(trainY.shape[1])(z)
# 多步预测
for i in range(config.num_steps-1):
z = concatenate([z, res]) # 把上一步的预测结果作为输入
z = Dense(trainY.shape[1])(z)
res = add([res, z])
res = Activation('sigmoid')(res)
model = Model(inputs=[input_data1, input_data2], outputs=res)
return model
```
主要修改的部分是在加入LSTM层后,将return_sequences设置为True,以便进行多步预测。然后,在高速公路网络的部分,我们使用一个for循环来进行多步预测。在每个时间步,我们将上一步的预测结果与输入连接起来,并使用Dense层进行预测。最后,我们将所有预测结果相加,并使用sigmoid激活函数进行输出。
阅读全文