python open cv识别出拳动作
时间: 2023-05-24 09:06:56 浏览: 121
作为AI语言模型,我无法亲自执行此操作。以下是基本的Python OpenCV示例,可用于识别手势。
首先,需要收集一些训练数据,即拍照或录制视频,显示不同的手势。将这些数据标记为“剪刀”、“石头”或“布”。然后,使用Python OpenCV分析这些数据并创建一个分类器,以便可以将新手势分配到正确的类别。
下面是一个简单的示例代码段,它使用OpenCV和机器学习算法来识别手势:
```
import cv2
import numpy as np
import math
# Load the cascades (pre-trained classifiers)
hand_cascade = cv2.CascadeClassifier('files/hand.xml')
# Load the classifier
clf = cv2.ml.SVM_load('files/svm_data.dat')
# Capture frames from the camera
cap = cv2.VideoCapture(0)
while True:
# Read the camera image
ret, frame = cap.read()
# Convert to grayscale
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Detect the hand
hands = hand_cascade.detectMultiScale(gray, 1.3, 5)
# Loop through each hand and draw a rectangle around it
for (x,y,w,h) in hands:
cv2.rectangle(frame, (x,y), (x+w,y+h), (0,255,0), 2)
# Extract the hand image and resize it
hand = gray[y:y+h, x:x+w]
hand = cv2.resize(hand, (50,50))
# Flatten the image into a vector
vec = np.float32(hand.flatten())
# Classify the hand gesture
result = clf.predict(vec.reshape(1,-1))[1]
if result == 1:
label = 'scissor'
elif result == 2:
label = 'rock'
else:
label = 'paper'
# Draw the label on the screen
cv2.putText(frame, label, (x,y-5), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,255,0), 2)
# Display the resulting image
cv2.imshow('frame', frame)
# Press 'q' to quit
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release the capture
cap.release()
cv2.destroyAllWindows()
```
这段代码将使用OpenCV的级联分类器(hand_cascade)来检测手势,然后提取并分类特征向量(vec)。它还将加载预训练分类器(clf),该分类器已经通过训练数据集进行了训练,并可以对新手势进行分类。最后,它将在摄像头捕获的图像上显示检测到的手势和分类结果。
阅读全文